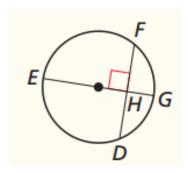
Perpendicular Chord Bisector Theorem

If a diameter of a circle is perpendicular to a chord, then the diameter bisects the chord and its arc.

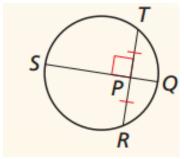


PROOF:

Statements	Reasons
$\overline{EG} \perp \overline{FH}$	Given
Say O is the center of the circle. Draw \overline{OF} and \overline{OD}	Through any two points there is one line
$\overline{\mathit{OF}}\cong\overline{\mathit{OD}}$	Radii in the same circle are congruent
$\overline{OH} \cong \overline{OH}$	Reflex. Prop. ≅
∠OHF and ∠OHD are right angles	Definition of perpendicular segments/lines
ΔOHF and ΔOHD are right triangles	Definition of a right triangle
$\Delta OHF \cong \Delta OHD$	HL≅
$\overline{FH}\cong\overline{DH}$	CPCTC
\overline{EG} bisects \overline{FD}	Definition of a segments bisector
	(H is the midpoint since the segments are congruent on
	either side of this point in the same segment)
$\angle HOD \cong \angle HOF$	CPCTC
$\widehat{FG}\cong\widehat{DG}$	Congruent Central Angles Theorem
\overline{EG} bisects \widehat{FD}	The arcs on either side of G are congruent

Perpendicular Chord Bisector Converse

If one chord of a circle is a perpendicular bisector of another chord, then the first chord is a diameter.



PROOF:

Statements	Reasons
\overline{SQ} is the perpendicular bisector of \overline{TR} in the circle	Given
Plot L, the center of the circle. Draw \overline{LT} and \overline{LR}	Through any two points there is one line
$\overline{LT}\cong\overline{LR}$	Radii in the same circle are congruent
$\overline{TP} \cong \overline{RP}$	Definition of a segment bisector (from the perpendicular
	bisector given)
$\overline{\mathit{LP}} \cong \overline{\mathit{LP}}$	Reflex. Prop. ≅
$\Delta LPR \cong \Delta LPT$	SSS≅
$\angle LPR \cong \angle LPT$	CPCTC
$\overline{LP} \perp \overline{TR}$	Linear Pair Perpendicular Theorem
L is on the perpendicular bisector of \overline{TR} , and thus L lies	Definition of perpendicular lines/segments
on \overline{QS}	
\overline{QS} is a diameter of the circle	Definition of a diameter (chord \overline{QS} contains the center of the circle)