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 FIBONACCI POWER SERIES

 Fibonacci power series

 PAUL GLAISTER

 A student usually first meets power series through an infinite geometric
 progression, having previously considered finite geometric progressions. In this
 note we consider a variation of this introductory material which involves the
 Fibonacci numbers. This necessarily poses various questions, e.g. 'When does
 the series converge and, if so, what is the sum?'. However, there is one further
 intriguing question that is natural to ask, and this leads to some interesting
 mathematics. All of this is appropriate for sixth formers, either for classroom
 discussion or as an exercise.

 To introduce the first series consider the geometric progression
 00

 ti = t + t2 + ... (1)
 i=1

 which converges to t/(l - t), provided -1 < t < 1. For example, with
 t = ?2, we have

 E=(l2) = 1 1/ = 1.
 =1 l-?

 If we now multiply the terms in (1) by the Fibonacci numbers defined by

 F1 = F2 = 1; Fi = F i_ +-F_2, i > 3, (2)
 i.e. multiply t' by Fi, we obtain the series

 00

 S = Fiti (3)
 i= 1

 whose convergence is now in question. (The first ten Fibonacci numbers are 1,
 1, 2, 3, 5, 8, 13, 21, 34 and 55.) To answer this we attempt to evaluate S by
 employing definition (2), i.e.

 00 00

 S = EFiti = F,t + F2t2 + EFiti
 i=l i=3

 oo

 = t+t2+E(Fi- +Fi-2)t
 i=3
 oo oo

 = t + t2 + t EFpi + t2 F tq
 p=2 q=l

 = t + t + t (S- t) + t2S

 and hence

 t
 S = EFit =(4)

 =1' 1 - o(t + t2)
 However we know that the series for 1/(1 - ct) converges if and only if
 I ct I < 1, and hence expressing the right hand side of (4) using partial fractions
 will identify the radius of convergence for the series S.
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 Factorising the denominator on the right hand side of (4) as
 1 - t - t2 = (1 - at)(1 - bt), where a = /2 (1 + /5) - 1.618 and
 b = /2(1 - /5) -0.618, then

 t t A B

 1 - t - t2 (1 - at)(l - bt) 1 - at 1 - bt'
 and determination of A and B gives A = -B = 1/ (a - b) = 1/1V5. Hence

 00 _ . 1/15 - 1 /15
 S = E Fi ti = 1 t - 1 bt' (5)

 -= 1 -at 1 - bt'

 where a and b are given above. Now, the series for the first term on the right
 hand side of (5) converges if and only if | at I < 1, and similarly the series for
 the second term on the right hand side converges if and only if | bt | < 1. Thus
 the series S converges if and only if tl < |min (i a-l I, b-~ |) 1.

 However, since 0 < -b < a, with ab = -1, then min (I a-l , | b- |) = -b is
 the radius of convergence, and the range of values for t for which the series S
 converges is b < t < -b, or

 1/2(1- IV5) < t < /?(x5- 1), (6)
 i.e. - 0.618 < t < 0.618 approximately. We note that expanding the series
 on the right hand side of (5) and comparing coefficients of t' yields the familiar
 explicit formula for the ith Fibonacci number as

 F. = (a'- bi)
 \5 '

 where a and b are given above, and we make use of this shortly. Alternatively,
 one could use the recurrence relation (2) and the theory of difference equations
 to derive (7), and then employ this in (3) to prove (4). This approach is not
 quite so straightforward, however, when considering generalisations of (3),
 including those we consider later on.

 We now pose the question 'for what values of t does the series (4) converge
 to an integer?'. (Clearly for all rational t in the interval of convergence the sum
 S is rational.) The corresponding question for the geometric series (1) is
 straightforward since if the sum t/(1 - t) = m is an integer, then
 t = m/(1 + m) and we note that any such t is a rational. For example, if
 m = 2, then t = 2/3 and i7=l (2/3)' = 2. For the series (4), however, the
 answer is not obvious. To obtain a sum which is 1, say, then
 t/(1 - (1 + t2)) = 1, and hence t = -1 ? /2. The negative root lies outside
 the interval of convergence, so only with t = x/2 - 1 will the series converge
 to 1. It is not difficult to obtain a formula for the required value of t for which
 the series converges to a prescribed integer, since it is merely the solution of a
 quadratic equation. What is more taxing, however, is to determine the rational
 values of t for which the sum is an integer value, and it is this more specific
 problem that we now turn to.

 Thus, suppose that the sum S in (4) is the integer k > 1, so that

 t

 - - k.
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 Rearranging gives the quadratic equation

 kt2 + (k + l)t - k = 0,
 whose roots are

 -(k + 1) ? /(k + 1)2 + (2k)2 (8)
 2k

 which means that there are two possible values of t for the series to converge to
 k, depending on whether they are in the interval of convergence in (6). We
 require t to be rational and hence that the discriminant (k + 1)2 + (2k)2 is a
 perfect square. This can be achieved through Pythagorean triples, i.e. set

 k + 1 = m2- n2 and 2k = 2mn (9)
 for some integers m > n > 1. In this case,

 (k + 1)2 + (2k)2 = (m2 - n2)2 + (2mn)2 = (m2 + n2)2 (10)
 and, substituting from (9) and (10) into (8),

 -(k + 1) ? (m2 + n2) -(m2 _ n2) + (m2 + n2)
 2k 2mn

 n -m
 = - or
 m n

 giving the required rational values of t. However, since the product of these
 values tt2 = -1 and the product of the end points of the interval of
 convergence in (6) is -b2 e (-1, 0), there can be no more than one value of t in
 the interval of convergence.

 To complete the solution, therefore, we require integers m and n satisfying
 (9). If they can be found then eliminating k from the expressions in (9) yields

 m - n =mn +

 and 'completing the square' gives

 (m - In)2 = m2 - mn + 'n2 = n2 + 1 + ?n2 = 1 + ~n2

 i.e. (2m - n)2 = 4 + 5n2.
 Thus 4 + 5n2 must be a perfect square, say 4 + 5n2 = p2, where p is a positive
 integer. This now completes the solution. The first three cases are as follows:

 n = 1: 4 + 5n2 = 9 = 32, so 2m - n = p = 3, i.e. 2m - 1 = 3 and
 hence m = 2. Thus k = mn = 2 is the sum. The two possible
 values of t are n/m = I and -m/n = -2. The latter is outside the
 interval of convergence and hence E'= l Fi (?)i = 2.

 n = 3: 4 + 5n2 = 49 = 72, so 2m- n = p = 7, i.e. 2m - 3 = 7 and
 hence m = 5. Thus k = mn = 15 is the sum. The two possible
 values of t are n / m = 3 /5 and -m / n = -5 / 3. The latter is outside

 the interval of convergence and hence 'r= Fi ()2 = 15.
 n = 8: 4 + 5n2 = 324 = 182, so 2m - n = p = 18. i.e. 2m - 8 = 18

 and hence m = 13. Thus k = mn = 104 is the sum. The two

 possible values of t are n/m = 8/13 and -m/n = -13/8. The latter
 is outside the interval of convergence and hence '= I Fi (8) = 104.

 (We note that the corresponding negative values of n yield only values of t
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 which are outside the interval of convergence. For example, with n = -1 then
 m = 1 and both n/m = -1 and -m/n = 1 are outside the interval of

 convergence in (6). Similarly for n = -3, -8, etc.)

 Clearly the next obvious choice for n is 13 since we observe that the values
 of n appear to be the Fibonacci numbers with even indices, and the
 corresponding value of m is then the next Fibonacci number. Thus, with
 n = F2j, j > 1, then m = F2j + 1. One way of proving this is to employ (7), as
 follows, noting that ab = -1.

 Suppose n = F2j, j > 1, then

 4 + 5n2 = 4 + 5F22 4 + 5((aj- b

 = 4 + a4i - 2(ab)2' + b4' = a4j + 2 + b4j

 = a4' + 2(ab)2i + b4j

 =(a2 + b2)2
 Thus 4 + 5n2 is a perfect square, i.e. 2m - n = p = a2j + b2', and hence

 m = (p + n) = (a2i + b2i + F2j)

 = (a2j + b2' + (a2j- b2j)/x/5) 2

 = ((1 + 5)a2- (1 - V/5)b2 )/v15

 = (aa2' - bb2) / \/5 - (a2 - h2+ 1+ ) / 5

 = F2j+I

 as required. The relevant value of t is then n/m = F2j/F2j + , which is in the
 interval of convergence since it is well known that the sequence F2j/F2+ 1 -- -b
 as j -> oo is monotonically increasing, and hence that 0 < F2j/F2j + < -b for
 allj > 1. The value of S is k = mn = F2F2 +1, so that

 00

 iF(F2j/IF2j+)' = F2jF2j+i, j > 1. (11)

 (Note that t = -m/n is outside the interval of convergence.) Readers may like

 to check that with the negative value of n = -F2j, j > 1, then the
 corresponding value of m is F2j_ l, and both n/m and -m/n lie outside the
 interval of convergence since the sequence F2j_ 1 /F2j > -b for all j > 1, and
 that F2j /F2- 1 > 1 > -b for all j > 1.

 We now turn to some extensions of the series (3), the first one of which is

 T = E iFt',
 iT = 1

 whose sum is easily determined by differentiating (4) in the same way that the
 geometric series can be differentiated to give
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 d (l + t +t2 + ) d 1
 dt dt (1 - t)'

 i.e. 1 + 2t + 3t2 + ... = 1
 (1 - t)2

 Thus differentiating (4) and multiplying by t yields
 d d t
 dt 2t + ) = t( - (t + t2))'

 2 t3 + t(t2 + 1) i.e. T = Ft + 2F2t + 3F3t3 + ... (t + t2))2

 By factorising (1 - t - t2)2 = (1 - at)2(1 - bt)2 as before, and expressing T
 in terms of partial fractions as

 A' B' C' D'
 + + +

 (1 - at) (1 - bt) (1 - at)2 (1 - bt)2
 for suitable constants A', B', C' and D', it can be shown that T converges for the
 same values of t that S does. Readers are left to investigate what rational values
 of t makes T integral, as well as the extension to i= 1 i2Fi ti, etc.

 Finally, two related series that are worth considering are
 00

 U = EFi 2t,

 v = 1/; t
 i=1

 To evaluate these we can use the previous approach and consider U and employ
 the relation (2). This necessarily introduces the second series V, and readers
 may like to show that

 (1 - t - t2)U = t + 2t2V, (12)
 i.e. U and V are related. To find another relation between U and V it is

 necessary to consider V and employ (2), and this gives

 (1 - t)V = U. (13)

 Combining (12) and (13) then gives the individual sums

 U= t(l-3 (1 + t)(t2- 3t + 1)'
 t

 V = t (1 + t)(t2 - 3t + 1)

 We leave readers to examine the question of convergence of these series (by
 observing that t2 - 3t + 1 = (t - a2)(t - b2) and employing partial
 fractions), together with the problem of determining rational t for which U (or
 V) is integral.

 PAUL GLAISTER

 Department of Mathematics, PO Box 220, University of Reading RG6 2AX
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