
What is Regression?

Chris Henson

June 12, 2020

1 What is Regression?

Linear regression is a fundamental aspect of statistics, universally taught in any intro-
ductory course. However, what it truly represents and how it functions is often presented
in a disjointed way that does not reveal the surprising depth of connections to various
mathematical areas, from calculus to sampling distributions.

Here I will begin with the simplest case of simple linear regression and build from
the ground up, attempting to create a cohesive look at the intricate mathematics and
statistics of regression. I assume that you have a working knowledge of calculus and
matrix operations, but review the required statistical tools such as expected value and
variance.

2 Simple Linear Regression

Let’s start with the simplest of cases. We have two variables: x and y.

We would like to find a line that closely matches these points. We will write this
equation as:

ŷ = β0 + β1x

For now, let’s not worry too much about what the “hat” symbol means. It suffices to
say that ŷ is the value that lies on our line. How do we find the intercept and coefficient?
We will select them to minimize the squared difference between ŷ and y. As an equation,
where n is our number of data points, we are seeking:

arg min
β0,β1

n∑
i=1

(yi − ŷi)2
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Note that at this point I’ve stated no assumptions about normality or anything else
we’ve learned in statistics. We’re just finding a line and this is just a calculus problem! A
valid question is: “why squared?”. The sarcastic answer is because it makes the calculus
easier. As we’ll see later, this choice is not absolute.

This squared difference goes by many names, such as squared loss, squared residuals,
or SSE. To find our solution, we just need a bit of calculus. First a little simplification:

SSE =

n∑
i=1

(yi − ŷi)2

=

n∑
i=1

(yi − β0 − β1xi)
2

We take the derivative with respect to β0, set equal to zero, and solve to minimize:

0 =
∂SSE

∂β0
=

n∑
i=1

−2(yi − β0 − β1xi)

=
n∑
i=1

(yi − β0 − β1xi)

=

n∑
i=1

yi − nβ0 − β1

n∑
i=1

xi

nβ0 =

n∑
i=1

yi − β1

n∑
i=1

xi

β̂0 =

∑n
i=1 yi
n

− β1

∑n
i=1 xi
n

The remaining summations are, by definition, sample means of x and y. So we have:

β̂0 = ȳ − β1x̄
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Notice that I have added a hat symbol to represent that this is a particular value. Now
we can take our derivative with respect to β1, substituting the above formula for β̂0:

0 =
∂SSE

∂β1
=

n∑
i=1

−2xi(yi − β0 − β1xi)

=
n∑
i=1

−2(xiyi − β0xi − β1x
2
i )

=
n∑
i=1

(xiyi − xiȳ + β1xix̄− β1x
2
i )

=
n∑
i=1

(xiyi − xiȳ)− β1

n∑
i=1

(x2
i − xix̄)

so dividing gives:

β̂1 =

∑n
i=1(xiyi − xiȳ)∑n
i=1(x2

i − xix̄)

Notice again the hat to represent a particuliar solution. A little rearranging gives
the following:

β̂1 =

∑n
i=1(xi − x̄)(yi − ȳ)∑n

i=1(xi − x̄)2

Just looking at this form, there is something intuitive about it being a measure in
the numerator of how often x and y differ from their means at the same time. (More on
this in the next section!)

Together, we have a single formula for our line:

ŷi = β̂0 + β̂1xi

= ȳ − β̂1x̄+ β̂1xi

= ȳ + β̂1(xi − x̄)

= ȳ +

(∑n
i=1(xi − x̄)(yi − ȳ)∑n

i=1(xi − x̄)2

)
(xi − x̄)
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3 Expectation, Variance, and Covariance

Above I used the idea of the mean freely, as it is such a common topic. To be precise,
given a set x1, x2, . . . , xn, we say that the mean is:

x̄ =

n∑
i=1

xi

n

In the special case where we know that we have the entire population, as opposed to
a sample, we denote this as µ.

The idea of an expected value is closely related. If we have a set of probabilities
p1, p2, . . . , pn associated with our data, we say that the expected value is:

E[X] =

n∑
i=1

xi pi

which is very intuitively interpreted as a weighted average according to our proba-
bilities. If we have a continuous variable we write:

E[X] =

∫
R
xf(x) dx

where f(x) is our probability density function. This expected value and mean are
quite intuitive in that they tell us on average what values our data takes, and have
several nice properties, especially that expected value is linear.

If we instead want information about the spread of the data, we will look towards
variance, defined as:

Var(X) = E
[
(X − E[X])2

]
= E[X2]− E[X]2

Similarly, the covariance between the two variables is defined as:

Cov(X,Y ) = E
[
(X − E[X])(Y − E[Y ])

]
= E[XY ]− E[X] E[Y ]

and we can easily see that Cov(X,X) = Var(X)

The intuition is also easy to see. Just like our regression measured squared residuals,
variance measures the squared residuals from the mean of the data to each individ-
ual point. Similarly, covariance measures how variance in one variable corresponds to
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variance in another variable by measuring when they both deviate from their means
simultaneously.

The similarity is not just an analogy, as you will see looking at our regression above
that

β̂1 =
Cov(x, y)

Var(x)

This also makes a sort of intuitive sense, that the slope of the line relating x and y
is related to how often they deviate from their means together, relative to how often x
deviates from its mean by itself. Again, note the properties that allow us to simplify
variances of linear combinations of random variables.

Often you will see this expressed as correlation, which is covariance scaled by variance:

rXY = corr(X,Y ) =
Cov(X,Y )√

Var(X) Var(Y )
=

E(XY )− E(X) E(Y )√
E(X2)− E(X)2

√
E(Y 2)− E(Y )2

5

https://en.wikipedia.org/wiki/Variance#Basic_properties


4 Bessel’s Correction

One important distintion to make with the above is that this is the definition for the
population variance.

Let’s be clear about our definitions of different symbols. Suppose we have a variable
X. Then the population parameters, taken across every instance of X, are:

The population mean, µ = E[X]

The population variance, σ2 = Var(X)

In reality, we seldom have the entire population at our disposal and must find a
suitable value to use as an estimate. We have already seen one such estimate, the sample
mean x̄. We use the sample mean so frequently that it is almost taken for granted to
use this as an estimate of the population mean, but why is this the case? The answer
is that the sample mean x̄ is an unbiased estimator of µ, in the sense that the expected
value of the sample mean is equal to µ.

Suppose that we have n samples, x1, x2, . . . , xn, of the variable X. Then:

E[x̄] = E

[
1

n

n∑
i=1

xi

]

=
1

n
E

[
n∑
i=1

xi

]

=
1

n

n∑
i=1

E[xi]

=
1

n

n∑
i=1

µ

= µ

So what should we use as our sample variance, meant to estimate σ2? A natural first
thought is to mirror the sample mean and multiply by the term 1

n . That is to use the
estimator:

s2
n =

1

n

n∑
i=1

(xi − x̄)2
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Notice here that these are the squared differences from x̄, which we must use since
we do not have access to the population mean µ. This aspect is crucial to notice, as it
causes this estimate to be biased. Look what happens when we take the expected value
of the difference between the population and uncorrected sample variance:

E
[
σ2 − s2

n

]
= E

[
1

n

n∑
i=1

(xi − µ)2 − 1

n

n∑
i=1

(xi − x)2

]

= E

[
1

n

n∑
i=1

(
(x2
i − 2xiµ+ µ2)− (x2

i − 2xix+ x2)
)]

= E

[
1

n

n∑
i=1

(
µ2 − x2 + 2xi(x− µ)

)]

= E

[
µ2 − x2 +

1

n

n∑
i=1

2xi(x− µ)

]
= E

[
µ2 − x2 + 2(x− µ)x

]
= E

[
µ2 − 2xµ+ x2

]
= E

[
(x− µ)2

]
= Var(x)

= Var

(
1

n

n∑
i=1

xi

)

=
1

n2

(
n∑
i=1

Var(xi)

)

=
1

n2

(
nσ2

)
=
σ2

n

So that:

E
[
s2
n

]
= σ2 − σ2

n
=
n− 1

n
σ2

From the coefficient, we can see that this sample variance is biased by underesti-
mating the true population variance, especially for a small n. The solution is to apply
Bessel’s correction, where we instead estimate using:

s2 =
1

n− 1

n∑
i=1

(xi − x̄)2
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As we can see this is now an unbiased estimate, using the above:

E[s2] = E

[
1

n− 1

n∑
i=1

(xi − x̄)2

]

=
n

n− 1
E

[
1

n

n∑
i=1

(xi − x̄)2

]

=
n

n− 1

(
n− 1

n

)
σ2

= σ2

5 Matrix Form

Now we’re prepared to look at regression of multiple variables. Suppose I am trying to
predict yi as a linear function of p variables xi,1, xi,2, . . . , xi,p My predicted values will
be given by:

ŷi = β0 + β1xi,1 + β2xi,2 + · · ·+ βpxi,p

A convenient way to represent this is through matrices, which I denote with bolded
letters. I will write the following to represent a dataset with n observations:

y =


y1

y2
...
yn

 x =


1 x1,1 x1,2 x1,3 . . . x1,p

1 x2,1 x2,2 x2,3 . . . x2,p

1
...

...
...

...
...

1 xn,1 xn,2 xn,3 . . . xn,p


and our intercept and coefficients as:

β =


β0

β1
...
βp
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Now we can see why we have the extra column of ones in x:

ŷ =


ŷ1

ŷ2
...
ŷn

 = xβ =


β0 + β1x1,1 + β2x1,2 + · · ·+ βpx1,p

β0 + β1x2,1 + β2x2,2 + · · ·+ βpx2,p
...

β0 + β1xn,1 + β2xn,2 + · · ·+ βpxn,p


Finally, we will write the difference between our actual and fitted values:

e = y− ŷ =


e1

e2
...
en


Now that we have everything set up, it’s time to minimize our squared residuals.

Almost just like before, we want to minimize:

arg min
β

n∑
i=1

(yi − ŷi)2

But we can now rewrite our squared error as:

n∑
i=1

(yi − ŷi)2 = e2 = eTe

simplifying:

SSE = e2 = eTe

= (y− ŷ)T (y− ŷ)

= (y− xβ)T (y− xβ)

= (yT − βTxT )(y− xβ)

= yTy− yTxβ − βTxTy + βTxTxβ

= yTy− 2βTxTy + βTxTxβ
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Now taking the gradient with respect to β and setting equal to 0:

0 = ∇βSSE = ∇yTy− 2∇βTxTy +∇βTxTxβ

= 0− 2xTy + 2xTxβ̂

= 2(xTxβ̂ − xTy)

= xTxβ̂ − xTy

xTxβ̂ = xTy

β̂ = (xTx)−1xTy

Again I add a hat symbol to represent a particular solution. Let’s confirm that this
is equivalent to our solution for a single variable. We have:

x =


1 x1

1 x2

1
...

1 xn

 β̂ =

[
β̂0

β̂1

]

So:

1

n
xTy =

1

n

[
1 1 . . . 1
x1 x2 . . . xn

]
y1

y2
...
yn


=

1

n

[ ∑
yi∑
xiyi

]
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and

1

n
xTx =

1

n

[
1 1 . . . 1
x1 x2 . . . xn

]
1 x1

1 x2

1
...

1 xn


=

1

n

[
n

∑
xi∑

xi
∑
x2
i

]
=

[
1 x̄

x̄ x̄2

]
(

1

n
xTx

)−1

=
1

x̄2 − x̄2

[
x̄2 −x̄
−x̄ 1

]

All together now:

β̂ = (xTx)−1xTy

=

(
1

n
xTx

)−1( 1

n
xTy

)
=

1

x̄2 − x̄2

[
x̄2 −x̄
−x̄ 1

]
1

n

[ ∑
yi∑
xiyi

]
=

1

n(x̄2 − x̄2)

[
x̄2
∑
yi +−x̄

∑
xiyi

−x̄
∑
yi +

∑
xiyi

]

Starting with the coefficient:

β̂1 =
−x̄
∑
yi +

∑
xiyi

n(x̄2 − x̄2)

=

∑
xiyi
n − x̄

∑
yi

n

x̄2 − x̄2

=
xy − x̄ȳ
x̄2 − x̄2

=
Cov(x, y)

Var(x)
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and the intercept:

β̂0 =
x̄2
∑
yi − x̄

∑
xiyi

n(x̄2 − x̄2)

=
x̄2

∑
yi
n − x̄

∑
xiyi
n

x̄2 − x̄2

=
x̄2ȳ − x̄xy
x̄2 − x̄2

=
(x̄2 − x̄2 + x̄2)ȳ − x̄(xy − x̄ȳ + x̄ȳ)

x̄2 − x̄2

=
(x̄2 − x̄2)ȳ + x̄2ȳ − x̄(xy − x̄ȳ)− x̄2ȳ

x̄2 − x̄2

=
(x̄2 − x̄2)ȳ

x̄2 − x̄2
+
x̄2ȳ − x̄(xy − x̄ȳ)− x̄2ȳ

x̄2 − x̄2

= ȳ +
x̄(x̄ȳ − xy + x̄ȳ − x̄ȳ)

x̄2 − x̄2

= ȳ + x̄
x̄ȳ − xy
x̄2 − x̄2

= ȳ − x̄β̂1

That wasn’t too painful. Note that at this point, I still haven’t done any statistics!!
This is purely a calculus problem so far of finding the vector β̂ that minimizes our
squared errors. Let’s finally add some statistics to the mix.

6 The Normal Distribution and Sampling

The univariate normal distribution is given by the equation:

f(x) =
1

σ
√

2π
exp

[
−1

2

(
x− µ
σ

)2
]

where we have mean µ and variance σ2. (You can integrate this function to confirm
this fact!).

This distribution is central to statistics for several reasons. Most prominently perhaps
is the Central limit theorem that shows that random samples of variables, even if they are
not normal themselves, can be described by a normal distribution. Again, the sarcastic
answer is that they also make our calculations much easier. In the context of regression,
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we use the normal distribution as part of our statistical assumptions to infer information
that lies outside our observed variables.

Remember that everything that we have done thus far has been completely deter-
ministic, but also limited in a sense. For any arbitrary number of variables x1, x2, . . . , xp
and variable y, we have found an exact solution to the line that minimizes our squared
residuals. But what about the data that we haven’t observed? So far we haven’t been
able to say anything about how accurate we believe our relationship is, or provide any
sort of error bounds for future predictions. All that we have is our deterministic β̂.
Remember that I said that the hat symbolizes that this is an estimate, particularly an
estimate determined from our given data. What we would like to do is develop a set of
assumptions that allows us to understand the relationship between β̂, our estimate, and
a theorized β, the true coefficients that describe the relationship between our variables.

7 The Assumptions of Linear Regression

In matrix form we will assume the model:

y = xβ + ε

where ε is a random variable of “noise”. (Otherwise, the data would be perfectly
linear!).

Note the use of β without the hat symbol. This β is the vector of “true” coefficients
and β̂ will be our estimate of these coefficients. We will still calculate β̂ in the same
way, but now it is a statistical variable rather than a fully deterministic quantity.

Here we will have further requirements on ε that are crucial. Specifically, we assume
that ε is given by a normal distribution with a mean of 0 and some constant variance
σ2.

We also assume that variance and mean is not correlated with x. That is for all
[xi,1, . . . , xi,p]

T :

E[ε|[xi,1, . . . , xi,p]T ] = 0, Var[ε|[xi,1, . . . , xi,p]T ] = σ2

Finally, we assume that each ε is independent, that is it has the covariance matrix:

Cov[εi, εj ] = σ2In

To be precise, we are saying that the errors are a Multivariate normal distribution
given by ε ∼ N (0, σ2In)

13

https://en.wikipedia.org/wiki/Multivariate_normal_distribution


What does this all mean intuitively? First, saying that our errors have mean zero
means that assume that the model is valid for all values of our independent variable.
In real life, we very well could have pockets of values where the “true” coefficients vary
between different inputs, especially if there is a variable that we are unable to record.

Our assumption of constant variance rules out possibilities where the spread of our
variable y is changing over time. Imagine for instance a machine that slowly deteriorates
in performance over time and becomes more sporadic. This would violate the assumption
of constant variance, called homoscedasticity.

Lastly, our assumption about independence (the diagonal covariance matrix) is one
of the most likely to fail for any situation that includes a time component, as it states
that the error associated with each point is not related to those close to it. In all, we
must be very careful about these assumptions, and it is a crucial step to empirically
measure these values before drawing any further conclusions about our data. However,
if we can reasonably assume these pieces, we can say much more about our data and
about the nature of our predictions.

8 Applying our Assumptions

Given the assumptions above, there is much that we can say about our predicted values
of β̂. First, let’s rewrite our estimate in terms of the “true” coefficients β:

β̂ = (xTx)−1xTy

= (xTx)−1xT (xβ + ε)

= (xTx)−1xTxβ + (xTx)−1xT ε

= β + (xTx)−1xT ε

We can calculate the expected value:

E[β̂] = E[β + (xTx)−1xT ε]

= E[β] + E[(xTx)−1xT ε]

= E[β] +
[
(xTx)−1xT

]
E[ε]

= β
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and the variance:

Var[β̂] = Var[(xTx)−1xTy]

= Var[(xTx)−1xT ε]

= (xTx)−1xT Var[ε]
(
(xTx)−1xT

)T
= (xTx)−1xTσ2Inx(xTx)−1

= σ2(xTx)−1xTx(xTx)−1

= σ2(xTx)−1

Since we assumed ε to be normal, we see that we have that our predictions themselves
are normally distributed! In particular:

β̂ ∼ N (β, σ2(xTx)−1)

There are several interesting things here. First, notice that the expected value of our
prediction is the true value of β, meaning that on average, our predictions will match
the true coefficients.

We also have some interesting information from the covariance matrix σ2(xTx)−1,
which not only gives us information about how much our predictions will vary, but also
shows us the correlation between our predictions of different coefficients, for instance
Cov(β̂0, β̂1)

We can use this normal distribution to make a confidence interval for our prediction
of coefficients. Realize however that we don’t have σ2 or β, the population parameters.
Instead, as discussed in the section on the Bessel correction, we must use the samples
that we have for these quantities.

Lastly, we can also find the expected value and covariance matrix for our observed
residuals e, which you may be surprised at first glance to compare with our theoretical
residuals ε.

Let H = xβyT = x(xTx)−1xT . The residuals can be rewritten as:

e = y− ŷ

= y−Hy

= (In −H)y
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Take note of the following:

(In −H)T = (In −H)

(In −H)2 = (In −H)

So we have:

E[e] = E[(In −H)y]

= (In −H) E[y]

= (In −H) E[xβ + ε]

= (In −H)(xβ + E[ε])

= (In −H)(xβ)

= xβ −Hxβ

= xβ − x(xTx)−1xTxβ

= xβ − xβ

= 0

and:

Var[e] = Var[(In −H)(xβ + ε)]

= Var[(In −H)ε)]

= (In −H) Var[ε](In −H)T

= σ2(In −H)(In −H)T

= σ2(In −H)

= σ2
(
In − x(xTx)−1xT

)
What’s the intuition here? Regression does guarantee that if our assumptions are

met, that the expected value of our errors is zero. Interestingly however, the variance of
these errors is not just σ2, but depends on the data and its covariance as shown above.
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9 A Probabilistic Viewpoint

Our approach so far seems a little backward. We took a deterministic method, then as
almost an afterthought applied a whole slew of assumptions about our data. At no point
were we able to incorporate any knowledge about the data itself; what if we had some
prior information about β? We were able to make several deductions, but they very
much were consequences of our assumptions applied to our model, which was selected
without incorporating any information about these assumptions. Is there a way that we
can start from the assumptions alone and derive the model in a probabilistic fashion,
not as a minimization problem?

The answer is a resounding yes. What we have seen so far is Ordinary Least Squares
regression, but as we will soon see, many variations are derived from tweaks to our
assumptions and methods of estimation.

We will begin by first examining two estimation methods, maximum likelihood es-
timation and maximum-a-posteriori estimation, seeing how they relate to our previous
Ordinary Least Squares solution.

Note: For the remainder of the article I have not included intercept terms. This
is purely for the sake of simplicity of presentation. To see that the difference is trivial,
imagine that instead of including an intercept we have shifted our response variable so
that the intercept would pass through the origin, making it unnecessary.

10 Maximum Likelihood Estimation (MLE)

In maximum likelihood estimation, we derive results by considering the probability that
our data D = d1, . . . ,dN is generated from a given β, that is:

d ∼ P (d|β), d = [xi,1, . . . , xi,p]
T

We define likelihood as the following joint distribution, with the assumption that our
samples d1, . . . ,dN are independent and identically distributed:

L(β) = P (D|β) = P (d1, . . . ,dN |β) =
N∏
n=1

P (dn|β)
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We define our MLE estimate as the β that maximizes this likelihood. As a practical
matter, we usually work with the equivalent log-likelihood:

β̂MLE = arg max
β

[L(β)]

= arg max
β

[
N∏
n=1

P (dn|β)

]

= arg max
β

[
log

N∏
n=1

P (dn|β)

]

= arg max
β

[
N∑
n=1

logP (dn|β)

]

Now we can derive the MLE estimate of linear regression. We have that each obser-
vation comes from the model:

y = βTx + ε, x =

x1
...
xp

 , β =

β1
...
βp


We still assume that:

ε ∼ N (0, σ2)

so that for each individual response:

y ∼ N (βTx, σ2)

The probability is:

P (y|x,β) = N (y|βTx, σ2) =
1√

2πσ2
exp

[
−(y − βTx)2

2σ2

]
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Now we can find the likelihood for a given y1, y2, . . . , yN :

logL(β) = logP (D|β) = logP (y1, y2, . . . , yN |X,β)

= log
N∏
i=1

P (yn|xn,β)

=
N∑
i=1

logP (yn|xn,β)

=

N∑
i=1

log

(
1√

2πσ2
exp

[
−(y − βTx)2

2σ2

])

=

N∑
i=1

(
−1

2
log(2πσ2)− (y − βTx)2

2σ2

)

Finally, we can compute the MLE solution:

β̂MLE = arg max
β

[
N∑
i=1

(
−1

2
log(2πσ2)− (y − βTxn)2

2σ2

)]

= arg max
β

[
N∑
i=1

(
−(y − βTxn)2

2σ2

)]

= arg max
β

[
− 1

2σ2

N∑
i=1

(y − βTxn)2

]

= arg min
β

[
1

2σ2

N∑
i=1

(y − βTxn)2

]

Miraculously this is the same as ordinary least squares if σ is constant! We came
to the same solution from a completely different perspective, arriving at our model as a
deduction from our assumptions about our errors. As I mentioned, however, this is not
the only method of regression. We still haven’t been able to incorporate any potential
prior knowledge we may have about our coefficients. With the next method, we will be
able to accomplish this.
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11 Maximum-a-Posteriori (MAP) Estimation

First, we start with Bayes rule, which gives the posterior probability:

P (β|D) =
P (β)P (D|β)

P (D)

here we refer to P (β) as our prior distribution, P (D|β) is the same likelihood we
used above, and P (D) is the probability of our data.

Instead of maximizing just our likelihood, we will maximize the posterior probability
and be able to include information about our prior distribution P (β). We define:

β̂MAP = arg max
β

P (β|D) = arg max
β

[
P (β)P (D|β)

P (D)

]
= arg max

β
[P (β)P (D|β)]

= arg max
β

[log[P (β)P (D|β)]]

= arg max
β

[logP (β) + logP (D|β)]

= arg max
β

[
logP (β) +

N∑
n=1

logP (dn|β)

]

We can see that the only difference between this and MLE is that we have added
a term that allows us to augment our likelihood with our prior information about how
likely or unlikely a particular set of coefficients is. This allows us to bend our solution to
satisfy additional constraints or incorporate information we have seen in the past. With
this tool in hand, we will be able to define several new methods of regression.
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12 Ridge Regression

For our first new method, called ridge regression, we will assume a normal distribution
on each of β1, . . . ,βp with constant variance τ2. Calculating the MAP estimate:

β̂RIDGE = arg max
β

[
logP (β) +

N∑
n=1

logP (dn|β)

]

= arg max
β

[
logP (β)− 1

2σ2

N∑
i=1

(y − βTxn)2

]

= arg max
β

log

p∏
j=1

1

τ
√

2π
exp

[
−
β2
j

2τ2

]
− 1

2σ2

N∑
i=1

(y − βTxn)2


= arg max

β

− p∑
j=1

β2
j

2τ2
− 1

2σ2

N∑
i=1

(y − βTxn)2


= arg min

β

 p∑
j=1

β2
j

2τ2
+

1

2σ2

N∑
i=1

(y − βTxn)2


= arg min

β

1

2σ2

σ2

τ2

p∑
j=1

β2
j +

N∑
i=1

(y − βTxn)2


= arg min

β

σ2

τ2

p∑
j=1

β2
j +

N∑
i=1

(y − βTxn)2



writing λ = σ2

τ2
we have:

β̂RIDGE = arg min
β

 N∑
i=1

(y − βTxn)2 + λ

p∑
j=1

β2
j


= arg min

β

[
(y−Xβ)T (y−Xβ) + λ‖β‖22

]
= arg min

β

[
‖(y−Xβ)‖22 + λ‖β‖22

]
What we see here is that ridge regression has the usual measure of squared residuals

but also penalizes large coefficients by adding their squared value, i.e. the `2 norm, times
some constant λ that we must also determine.
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I will denote this function as PRSS (penalized residual sum of squares). Taking the
derivative with respect to β and assuming that we have standardized X and centered y:

0 =
∂PRSS(β)`2

∂β
= −2XT (y−Xβ̂) + 2λβ̂

= XTXβ̂ −XTy + λβ̂

−β̂(XTX− λIp) = −XTy

β̂RIDGE,λ = (XTX + λIp)
−1XTy

Firstly, why do we standardize X and center y? If we did not do so and have
coefficients on very different scales, the value of the penalty term λ‖β‖22 is negated.

Look at the similarity to our OLS solution. Setting λ equal to 0 is the same as OLS!
We have simply added the shrinkage constant λ to the diagonal of the matrix XTX,
which is related to the covariance of our observed variables.

What is the effect of ridge regression on our predictions? By adding additional
information on the prior distribution, we have biased our predicted values away from
the true coefficients.

Let R = XTX. We can rewrite the ridge regression prediction:

β̂RIDGE,λ = (XTX + λIp)
−1XTy

= (R + λIp)
−1R(R−1XTy)

= [R(Ip + λR−1)]−1R[(XTX)−1XTy]

= (Ip + λR−1)−1R−1Rβ̂OLS

= (Ip + λR−1)β̂OLS

now taking the expectation:

E[β̂RIDGE,λ] = E[(Ip + λR−1)β̂OLS ]

= (Ip + λ(XTX)−1)βOLS

we can see how far away from an unbiased estimate we have with ridge regression.
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We can also rewrite ridge regression as OLS with an augmented data set. Consider:

PRSS
(
β
)
`2

=
n∑
i=1

(yi − xᵀi β)2 + λ

p∑
j=1

β2
j

rewritten as:

PRSS
(
β
)
`2

=

n∑
i=1

(yi − xᵀi β)2 +

p∑
j=1

(0−
√
λβj)

2

We can interpret this as adding new points to our scaled observations giving:

Xλ =



x1,1 x1,2 x1,3 . . . x1,p

x2,1 x2,2 x2,3 . . . x2,p
...

...
...

...
...

xn,1 xn,2 xn,3 . . . xn,p√
λ 0 0 . . . 0

0
√
λ 0

. . . 0

0 0
√
λ

. . . 0

0 0 0
. . . 0

0 0 0 0
√
λ


;yλ =



y1

y2
...
yn
0
0
0
...
0


More concisely we can write:

Xλ =

[
X√
λIp

]
yλ =

[
y
0

]
Now taking least squares of this:

(XT
λXλ)−1XT

λyλ =

(
[XT ,

√
λIp]

[
X√
λIp

])−1

[XT ,
√
λIp]

[
y
0

]
= (XTX + λIp)

−1XTy

which is exactly ridge regression! It is interesting to see these relationships between
ridge regression and OLS, especially the data augmentation technique that at first glance
seems to be concerning from a theoretical standpoint. Regardless, ridge regression is a
popular method, where in practice the use of ridge regression (and what λ to use) is
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based upon the performance of our model. Especially in situations where we have a
reason to expect coefficients that are very small and normally distributed, this model
performs very well.

13 Least Absolute Shrinkage and Selection Operator (LASSO)

The derivation of the LASSO regression is nearly identical to ridge regression, but instead
of assuming our coefficients are normally distributed, we will suppose that they follow
the Laplace distribution with mean 0 and parameter b:

f(x | b) =
1

2b
exp

(
−|x|
b

)
Again using the MAP estimate:

β̂LASSO = arg max
β

[
logP (β) +

N∑
n=1

logP (dn|β)

]

= arg max
β

[
logP (β)− 1

2σ2

N∑
i=1

(y − βTxn)2

]

= arg max
β

log

p∏
j=1

1

2b
exp

[
−|βj |

2b

]
− 1

2σ2

N∑
i=1

(y − βTxn)2


= arg max

β

− p∑
j=1

|βj |
2b
− 1

2σ2

N∑
i=1

(y − βTxn)2


= arg min

β

 p∑
j=1

|βj |
2b

+
1

2σ2

N∑
i=1

(y − βTxn)2


= arg min

β

1

2σ2

σ2

b

p∑
j=1

|βj |+
N∑
i=1

(y − βTxn)2


= arg min

β

σ2

b

p∑
j=1

|βj |+
N∑
i=1

(y − βTxn)2
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again we make a substitution, this time λ = σ2

b and have:

β̂LASSO = arg min
β

 N∑
i=1

(y − βTxn)2 + λ

p∑
j=1

|βj |


= arg min

β

[
(y−Xβ)T (y−Xβ) + λ‖β‖1

]
= arg min

β

[
‖(y−Xβ)‖22 + λ‖β‖1

]
One major difference is that because of the use of an absolute value, we cannot

easily take a derivative to find an analytic solution. We can, however, quantitatively
solve and make comparisons with how LASSO shrinks our estimate in comparison to
ridge regression. Look at the below visualizations of the norms used in LASSO and ridge
respectively:

In ridge regression, while we can arbitrarily shrink our coefficients, none will ever
be eliminated. On the other hand, the `1 norm’s “sharp edge” allows for variables to
be removed, allowing LASSO to be used as a sort of heuristic for feature selection.
This also matches the intuition of assigning a Laplacian prior distribution, as varying
the b parameter causes the distribution to peak more sharply at 0, corresponding to
eliminating more variables from consideration.

25



14 Elastic Net

As a final consideration of setting different priors with the MAP estimate of linear
regression, we briefly turn our attention to the elastic net. It takes the form:

β̂NET = arg min
β

[
‖(y−Xβ)‖22 + λ1‖β‖1 + λ2‖β‖22

]
or

β̂NET = arg min
β

[
‖(y−Xβ)‖22 + (1− α)‖β‖1 + (α)‖β‖22

]
, α =

λ2

λ1 + λ2

As can be inferred from the formulation, the elastic net combines the penalty that
is given by the LASSO and ridge regressions, as can be visualized by comparing the
penalties of the three methods:

For more information, you can read the original paper. There is also a probabilistic
interpretation, here are two papers that I have found but not yet had a chance to read.
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15 James-Stein Estimation

I’ve saved the best for last, I promise. The final estimator we will consider is the James-
Stein estimator, which presents one of the most interesting paradoxes in statistics.

Suppose for a moment that I take one single sample from a multivariate normal
distribution. As I only have a single point, maximum likelihood estimation would tell
me that, given my current information, this is the most likely value for the mean of the
distribution. We define the risk for such an estimate as the average squared difference
between our estimate and the actual value. So if I collect one sample:

θ̂ =


x1

x2
...
xp


the risk would be:

Risk =
1

p

p∑
i=1

(xi − θi)2

MLE performs rather well in terms of this measurement. We can show that for a
scaled normal distribution X ∼ N (θ, In) that the expected value of this risk is equal
to 1, that is:

E

[
1

p

p∑
i=1

(xi − θi)2

]
=

1

p

p∑
i=1

E
[
(xi − θi)2

]
= 1

This also makes a sort of intuitive sense, in that if we select a single observation
as our estimate of a multivariate normal distribution that we would expect the total
deviation to remain within roughly one standard deviation of the mean.

Surprisingly in 1961, the statistician Charles Stein and his student Willard James
produced a different sort of estimation method that can be shown to have a uniformly
lower risk than MLE for three or more dimensions. What takes this from surprising to
nearly unbelievable is that this method works by taking the original MLE estimate and
shrinking it by a factor that is inversely proportional to the squared norm of our obser-
vation. Think about how unintuitive this is for a moment. Even under the supposition
that our variables are uncorrelated, the James-Stein estimator uses the entire sample
to determine how much to shrink our estimate. They could be completely unrelated
quantities like measurements of the speed of light and the price of tea in China, yet this
relation would still hold!
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Still considering the above case of taking a single sample from the normal distribution
N (θ, In) the James-Stein estimator is the following:

θ̂JS =

(
1− p− 2

‖x‖2

)
x

For instance, suppose we had sampled x = θ̂MLE = (−0.8859395, 0.2597109,−1.1817573).
Our shrinkage factor would be:

(
1− 1

−0.88593952 + 0.25971092 +−1.18175732

)
= .555336

giving:

θ̂JS
T

= .555336

−0.8859395
0.2597109
−1.1817573

 =

−0.4919941
0.1442268
−0.6562724


With a good bit of statistical work, we can quantify how much better the James-Stein

estimator performs than MLE. Unlike MLE, the risk is not a constant value but depends
on several factors such as the number of variables (adding more decreases risk) and how
close the mean vector is to zero. To be exact, the risk for the James-Stein estimator is:

RiskJS = 1− (p− 2)2

p
E

[
1

‖x‖2

]
To apply this to regression, we use the following variant of the James-Stein estimator:

β̂JS = β̂OLS

(
1−

(p− 2)σ
2

n

(β̂OLS − β̃)T (β̂OLS − β̃)

)

where σ2 is the variance of our residuals and β̃ is our vector of coefficients that we
have selected to shrink towards, much in a similiar fashion as the LASSO and ridge
estimators. For more information, take a look at this simulation that I made in R and
see this paper for details about how the James-Stein estimator for regression performs.
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16 Conclusion

As we have seen in this article, the topic of regression, which at first glance appears
to be rather simple, has a diversity of subtleties and nuance. This is just a small
yet representative sample (pun intended) of the sort of statistics that can be done in
estimating models.

Keep in mind that this is just linear regression, we didn’t even touch any other
types of models. Especially when reasoning under statistical uncertainty or dealing with
problems such as causality, heteroscedasticity, or other more advanced topics, a solid
understanding of these fundamentals that underpin linear regression is a powerful tool.

If you have any questions or think you may have spotted an error in my calculations,
please do not hesitate to contact me!
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