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Abstract

We provide a compendium of evaluation methods for the Riemann zeta function, presenting formulae ranging from
historical attempts to recently found convergent series to curious oddities old and new. We concentrate primarily on
practical computational issues, such issues depending on the domain of the argument, the desired speed of computation,
and the incidence of what we call “value recycling”. c© 2000 Elsevier Science B.V. All rights reserved.

1. Motivation for e�cient evaluation schemes

It was, of course, a profound discovery of Riemann that a function so superbly exploited by Euler,
namely

�(s) =
∞∑
n=1

1
ns
=

∏
p prime

(1− p−s)−1 (1)

could be interpreted – to great advantage – for general complex s-values. Sum (1) de�nes the
Riemann zeta function in the half-plane of absolute convergence R (s)¿ 1, and in the entire complex
plane (except for the pole at s= 1) by analytic continuation. The purpose of the present treatise is
to provide an overview of both old and new methods for evaluating �(s).
Starting with Riemann himself, algorithms for evaluating �(s) have been discovered over the

ensuing century and a half, and are still being developed in earnest. But why concentrate at all
on computational schemes? One reason, of course, is the intrinsic beauty of the subject; a beauty
which cannot be denied. But another reason is that the Riemann zeta function appears – perhaps
surprisingly – in many disparate domains of mathematics and science, well beyond its canonical
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domain of analytic number theory. Accordingly, we shall provide next an overview of some such
connections, with the intent to underscore the importance of e�cient computational methods.
Typically, a particular method is geared to a speci�c domain, such as the critical strip 0¡R (s)¡1,

or the positive integers, or arguments lying in arithmetic progression, and so on. We shall honor this
variety of purpose in presenting both old and new evaluation methods with a view to the speci�c
domain in question. Just as the method of choice for evaluation tends to depend on the domain,
the domain in turn typically depends on the theoretical or computational problem at hand. Though
much of the present treatment involves new results for s-values in integer arithmetic progression,
we shall digress presently to mention the primary historical motivation for � evaluation: analytic
number theory applications.
There are well-known and utterly beautiful connections between number-theoretical facts and the

behavior of the Riemann zeta function in certain complex regions. We shall summarize some basic
connections with a brevity that belies the depth of the subject. First we state that � evaluations in
certain complex regions of the s-plane have been used to establish theoretical bounds. Observe from
de�nition (1) that, in some appropriate sense, full knowledge of � behavior should lead to full knowl-
edge of the prime numbers. There is Euler’s rigorous deduction of the in�nitude of primes from the
appearance of the pole at s=1; in fact, he deduced the stronger result that the sum of the reciprocals
of the primes diverges. There is the known [60] equivalence of the prime number theorem [55]:

�(x) ∼ li(x) :=
∫ x

0

du
log u

∼ x
log x

(2)

with the nonvanishing of �(s) on the line R (s)=1. Here, the li integral assumes its Cauchy principal
value. (Note that some authors de�ne li in terms of an integral starting at u= 2 and di�ering from
our present integral by an absolute constant.)
Another way to witness a connection between prime numbers and the Riemann zeta function is

the following. We observe that behavior of �(s) on a line such as R (s) = 2 in principle determines
�(x). In fact, for any noninteger x¿ 1,

�∗(x) := �(x) + 1
2�(x

1=2) + 1
3�(x

1=3) + · · ·= 1
2�i

∫ c+i∞

c−i∞

xs

s
log �(s) ds; (3)

for any real c¿ 1. If one can perform the contour integral to su�cient precision, then one has a
value for �∗ and may peel o� the terms involving �(x1=n) successively, for example by recursive
appeal to the same integral formula with reduced x. This notion underlies the Lagarias–Odlyzko
method for evaluation of �(x) [76]. Those authors suggest clever modi�cation, based on Mellin
transforms, of the contour integrand. The idea is to transform xs=s to a more convergent function
of I (s), with a relatively small penalty in necessary corrections to the �∗ function. Experimental
calculations using standard 64-bit oating point arithmetic for the � evaluations for quadrature of
the contour integral – with, say, Gaussian decay speci�ed for the integrand – can evidently reach
up to x ∼ 1014 but not much further [58,48]. Still, it should eventually be possible via such analytic
means to exceed current records such as:

�(1020) = 2220819602560918840

obtained by M. Del�eglise, J. Rivat, and P. Zimmerman via nonanalytic (i.e. combinatorial) means. In
fact, the Lagarias–Odlyzko remains the (asymptotically) fastest known �(x) counting method, requir-
ing only O(x1=2+�) bit complexity and O(x1=4+�) memory. The primary remaining obstacle to analytic
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superiority is the sheer di�culty of high-precision � evaluations, especially in regard to rigorous error
bounds, of which there is historically a de�nite paucity when one looks away from the critical line.
Then there are profound bounds on the uctuations of prime densities – that is, error bounds on

the prime number formula – depending on the celebrated Riemann hypothesis, that all the zeros in
the critical strip 0¡R (s)¡ 1 – call these the critical zeros – lie on the critical line s = 1

2 + it.
In this regard, a di�erent way of exploring the connection between � and prime numbers runs as
follows. Riemann established the following relation, valid for noninteger x¿ 1:

�∗(x) = li(x)−
∑
�

li(x�) +
∫ ∞

x

du
u(u2 − 1)log u − log 2;

where � runs over all zeros in the critical strip, that is 0¡R (�)¡ 1, and counting multiplicity.
Incidentally, the conditionally convergent sum over zeros �= �+ it is to be interpreted as the limit
of the sum over |t|6T as T → ∞ [62,55,63]. Arising from this kind of analysis is a highly re�ned
prime-number estimate – due in essence to Riemann – involving not �∗ but the elusive � function
itself. Since one can write

�(x) =
∞∑
m=1

�(m)
m

�∗(x1=m);

where � denotes the M�obius function, it should be the case that, in some appropriate sense

�(x) ∼ Ri(x)−
∑
�

Ri(x�) (4)

with Ri denoting the Riemann function de�ned:

Ri(x) =
∞∑
m=1

�(m)
m

li(x1=m): (5)

This relation (4) has been called “exact” [94], yet we could not locate a proof in the literature; such
a proof should be nontrivial, as the conditionally convergent series involved are problematic. In any
case relation (4) is quite accurate (see below), and furthermore the Riemann function Ri can be
calculated e�ciently via evaluations of � at integer arguments in the Gram formula we encounter
later (relation (70)).
The sum in (4) over critical zeros is not absolutely convergent, and furthermore the phases of the

summands interact in a frightfully complicated way. Still, we see that the known equivalence of the
Riemann hypothesis with the “best-possible” prime number theorem:

�(x)− li(x) = O(√x log x)

makes heuristic sense, as under the celebrated hypothesis |x�| would be √
x for every relevant zero

in (4). Incidentally, as far as this equivalence goes, it is even possible to give explicit values for the
implied big-O constant [10]. For example, for x¿ 2700 the magnitude of the left-hand side – under
the Riemann hypothesis – never exceeds (1=8�)

√
x log x. One way to �nd rigorous, explicit bounds on

certain sums over critical zeros (on the Riemann hypothesis) is to use the known [10] exact relation∑
|�|−2 = 1 + 1

2− 1
2 log(4�);

which incidentally is one possible overall check on any computational runs over many zeros. For
example, the left-hand sum above, over the �rst 200 zeros (with t ¿ 0) and their conjugate zeros,
is ∼ 0:021 while the right-hand constant is ∼ 0:023.
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Let us consider numerical experiments pertaining to �(x) itself. If one uses the Ri formalism
together with the �rst 200 critical zeros (with t ¿ 0) and their conjugates, a numerical estimate from
relation (4) is

�(1020) ∼ 2220819602591885820;
evidently correct to about 1 part in 1011. This is certainly more accurate than the direct, prime-number-
theorem estimate:

li(1020) ∼ 2220819602783663484:
It is in this way that Riemann critical zeros reveal, albeit somewhat unforgivingly, truths about prime
numbers. Incidentally, as a computational matter, a convenient way to obtain numerical evaluations
for li is to use the formal identity li(z)=Ei(log z), where Ei denotes the standard exponential integral,
the latter standard function often having the superior machine implementation.
Because of such analytical connections, each of which underscoring the importance of the Riemann

hypothesis, massive numerical calculations have been carried out over certain complex regions, such
manipulations in turn depending on rapid evaluation of �(s). In 1979 Brent [32] showed that the
�rst 81 million critical zeros lie on the critical line. In 1986 van de Lune et al. [82] showed that
the �rst 1.5 billion critical zeros also lie on the critical line. The Odlyzko–Sch�onhage method for �
evaluation in complex regions – which method we discuss in later sections – can be used to extend
such massive calculations yet further. Indeed, Odlyzko showed e�cacy by calculating 1:5 · 108 zeros
near the 1020th zero, and lately he has pressed such computations further, to the region of the 1022nd
zero. Then there is the Mertens conjecture, that∣∣∣∣∣

∑
n6x

�(n)

∣∣∣∣∣¡√
x for all x¿1;

where � denotes the M�obius function, which conjecture was disproved by numerical e�orts involving
computation of the �rst 2000 critical zeros [88]. We note here that an exploratory discussion – from
various vantage points – of the Riemann hypothesis appears in Section 8. In the earlier part of the
20th century Littlewood [81] performed a tour de force of analysis by establishing that �(x) and
li(x) trade dominance in�nitely often, in fact

�(x)− li(x) = 
±

(√
xlog log log x
log x

)
;

although we know not a single explicit x¿ 2 such that �(x) is the greater. After Littlewood’s proof
an upper bound on the �rst instance of integer x with �(x)¿ li(x) was given, on the Riemann
hypothesis, as a gargantuan, triply exponentiated “Skewes number”:

1010
1034

:

Skewes later removed the dependency to give an even larger, unconditional bound [98,99]. Through
the work of Lehman and te Riele the bound has been brought down to 10371, again using numerical
values of critical zeros [100]. Rosser and Schoenfeld have likewise analyzed complex zeros of related
functions to establish interesting bounds on yet other number-theoretical conjectures. For example,
they show that every integer greater than or equal to 2 is a sum of at most 7 primes [85]. More
recently, Bays and Hudson [15] have shown how to use zeros of Dirichlet L-functions to quite
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e�ciently compute the di�erence �1(x) − �3(x), for large x ∼ 10300 say, with �k(x) here being the
number of primes ≡ k (mod 4) and not exceeding x. Because of the obvious relevance to number
theory, we shall touch upon the problem of computational complexity for �( 12 + it) in Section 7.
But there are likewise beautiful, less familiar connections between the Riemann zeta function and

number-theoretical conjectures. Consider, for example, as proposed by Bach [7,8] and analyzed in
part also by Flajolet and Vardi [56] the following three constants: the Artin constant A, the Mertens
constant B, and the twin-prime constant C:

A=
∏
p

(
1− 1

p(p− 1)
)
; (6)

B= +
∑
p

(
log(1− p−1) + p−1) ; (7)

C =
∏
p¿2

(
1− 1

(p− 1)2
)
; (8)

in which product (6) and sum (7) run over all primes p, and product (8) runs over all odd primes.
The constant A arises in the theory of primitive roots, B arises in the powerful asymptotic relation∑

p6x 1=p ∼ B + log log x, and C arises in detailed conjectures regarding the density of twin prime
pairs. Relevant series developments for these constants are:

− logA=
∞∑
n=2

log �(n)
n

∑
m¡n;m|n

�(m)an=m−1; (9)

B− =
∞∑
n=2

log �(n)
n

�(n); (10)

− logC =
∞∑
n=2

log((1− 2−n)�(n))
n

∑
m¡n;m|n

�(m)(2n=m − 2); (11)

where a0 = 0, a1 = 1, otherwise ak = ak−1 + ak−2 + 1. A fascinating aspect of these relations is this:
whereas the original de�nitions (6)–(8), if used directly for computation, involve agonizingly slow
convergence (not to mention determination of primes), the three series (9)–(11) each converge
so rapidly that any of A; B; C may be determined to hundreds of digits in a convenient sitting.
Incidentally, there are yet more interesting relations between number-theoretical constants and such
entities as the logarithmic derivative �′(s)=�(s) [9].
It is worthwhile to observe that the so-called “prime-�” function

P(s) =
∑

p prime

p−s

can be evaluated to surprisingly high precision due to the identity

P(s) =
∞∑
n=1

�(n)
n
log �(ns):
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For example, a certain problem in connection with the arrangement of pairs of coprime planar
coordinates [107] amounts to analyzing the product

f(z) =
∏

p prime

(
1− z

p2

)

for some z 6= −1; 0; 1 (for each of which three values the product is well known). The problem can
be solved in one sense by observing that

logf(z) =−
∞∑
m=1

P(2m)
zm

m
;

whence the Taylor coe�cients of logf can be obtained to extreme precision without one having to
know a vast collection of primes. Incidentally, one theoretically convenient aspect of the prime-� is
that in the prime-counting relation (3), if one replaces �(s) with P(s), and x¿ 0 is again not an
integer, then the left-hand side is just �(x) rather than �∗(x).
Still in connection with analysis, many interesting identities are manifestations of what we shall

call “rational �-series”, being explicit representations of some real number x, in the form

x =
∞∑
n=2

qn�(n; m); (12)

where each qn is a rational number, m is �xed, and the �(n; m) are instances of the standard Hurwitz
zeta function

�(s; m) =
∞∑
n=0

1
(n+ m)s

: (13)

Note that �(s; 1)=�(s); the easy rule-of-thumb is that for integer m the Hurwitz �(s; m) is a zeta-like
sum that starts with 1=ms. Thus for integer m the rational �-series (12) takes the form

x =
∞∑
n=1

qn


�(n)−

m−1∑
j=1

j−n


 ;

in which the nth term decays roughly as qn=mn. We shall see in Section 4 that many fundamental
constants enjoy convenient, rational �-series representation; and we shall be concentrating, then, on
the variety involving �(n; 2).
Relations (9)–(11) involve collections of �-values and thus provide additional motive for what we

call “value recycling” (Section 6). By this we refer to scenarios in which initial calculated values
convey some information in regard to other values; so for instance some set of known �-values are
used to get others, or many values interact symbiotically. (We had thought to call such approaches
“parallel” schemes, but that is a slight misnomer because a single, scalar processor can bene�t full
well from most of the strategies we describe.) The motive for recycling �-values at integer arguments
is especially strong when a rational �-series is essentially the only known recourse for numerical
evaluation, for in such cases one desires large collections of �-values. In Section 4 we give examples
to show that this last resort – when one is compelled to rely upon a rational �-series – does arise
in practice.
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2. Collected relations

We next list standard properties of the Riemann zeta function. For R (s)¿ 1;R (�)¿ − 1 we
have a Hurwitz zeta representation:

�(s; � + 1) =
1

�(s)

∫ ∞

0

ts−1e−�t

et − 1 dt; �(s) = �(s; 1); (14)

whereas over the somewhat larger region R (s)¿ 0 the Riemann zeta function can be determined
in proportion to the � function:

�(s) = (1− 21−s)�(s) =
1

�(s)

∫ ∞

0

ts−1

et + 1
dt:

As we shall see in Section 3, these integrals themselves already yield interesting, convergent expan-
sions suitable for computation; not, however, always the fastest available. In Riemann’s own works
one �nds integral representations that de�ne �(s) for all complex s, for example,

�−s=2�( 12s)�(s) =−1
s
− 1
1− s

+
1
2

∫ ∞

1
(t(1−s)=2 + ts=2)(�3(e−�t)− 1)dtt ; (15)

in which the Jacobi theta-function [22] is �3(q) =
∑∞

n=−∞ qn2 . This representation will give rise to
an (extremely) rapidly converging series (30), although the summands will be nonelementary. The
collection of entire representations is by no means limited to (15). For example, there is the Jensen
formula

�(s) =
1
2
+

1
s− 1 + 2

∫ ∞

0

sin(s tan−1 t) dt
(1 + t2)s=2(e2�t − 1) ;

also valid for all s 6= 1, and useful in certain proofs of the prime number theorem [60].
From (15), there follows immediately the celebrated functional equation. If we de�ne

�(s) = 1
2s(s− 1)�−s=2�( 12s)�(s); (16)

then the functional equation can be written elegantly [55] as

�(s) = �(1− s): (17)

Furthermore, by considering complex values s= 1
2 + it, one sees that the Riemann hypothesis is true

if and only if all zeros of the function

�(t) =− 1
2 (t

2 + 1
4)�(

1
2 + it) (18)

are real [101]. The idea of forging a real-valued facsimile on the critical line is a good one, conducive
to numerical analysis such as locating critical zeros. But the �-function decays rapidly for large t,
so in practice a more reasonable choice is the function (sometimes called the Hardy function [72]):

Z(t) = exp(i#(t))�( 12 + it); (19)

where we de�ne # implicitly by

ei#(t) = �( 12 + it)
−1=2 (20)
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and the square root is de�ned continuously, with �xation
√

�( 12) = 1. In general, one may write

�(s) = �s−1=2�((1− s)=2)
�(s=2)

; #(t) = I (ln�( 14 + it=2))− 1
2 t ln �; (21)

of which the latter is computationally convenient (and circumvents the need for computing �; see
[51]). Now for real t, the Hardy Z-function is real and the equality |Z(t)|= |�( 12 + it)| holds. These
convenient properties render Z useful in modern searches for critical zeros [32,82]. In particular,
simple zeros of �( 12 + it) on the critical line are signi�ed by sign changes – as t increases – of the
Z-function, and this notion can be made rigorous by careful constraint on numerical error, so that
a machine can prove that all zeros in the critical strip interval t ∈ [0; T ] for some �xed T do, in
fact, lie precisely on the critical line [85]. Later in Section 3 we shall describe the kinds of error
contributions that appear in prevailing series developments of the Z-function.
It is well known that for positive even integer arguments we have exact evaluations

�(2n) =−(2�i)
2nB2n

2(2n)!
; (22)

in terms of the Bernoulli numbers 1;− 1
2 ;
1
6 ; 0;− 1

30 ; 0;
1
42 ; : : : de�ned by the generating series

t
et − 1 =

∞∑
m=0

Bm

m!
tm; (23)

in which B2n+1 =0 for n¿ 0. For computational purposes it will turn out to be important that series
(23) has radius of convergence 2�. Now from the functional equation (17) one may deduce the
analytic continuation value �(0) =− 1

2 and the values at negative integer arguments

�(−2n) = 0; �(1− 2n) =−B2n
2n

(24)

for positive integer n. An elegant and computationally lucrative representation for the even-argument
�-values is

�t cot �t =−2
∞∑
m=0

�(2m)t2m: (25)

Series (25) converges for |t|¡ 1, and with this constraint in mind can be used in many di�erent
computational algorithms, including some recycling ones, as we shall discuss. On the issue of whether
a convenient generating function can be obtained for odd-argument �-values, there is at least one
candidate, namely the following relation involving the logarithmic derivative of the gamma function,
i.e., the digamma function  (z) = d log�(z)=dz:

 (1− t) =−−
∞∑
n=2

�(n)tn−1; |t|¡ 1; (26)

which will be useful in the matter of value recycling.
Standard recurrence relations for Bernoulli numbers can be invoked to provide relations such as

m∑
k=0

(�i)2k

(2k + 1)!
(1− 22k−2m+1)�(2m− 2k) = 0 (27)
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and for integer k¿2,
k−1∑
j=1

�(2j)�(2k − 2j) = (k + 1
2)�(2k):

See [52] for generalizations to sums of products of N¿2 �-values, Bernoulli=Euler polynomials, and
the like. Similar relations for odd-argument �-values are di�cult if not fundamentally impossible to
obtain. There are, however, some interesting relations between the values at odd integer arguments
if we allow easily computed residual terms, which can be cast as rational �-series, as we shall see
in Section 5.
Many interrelations between � values can be inferred from the following series development for

the complex Lerch, or periodic zeta function [6,50]:
∞∑
n=1

e2�inx

ns
=−

∞∑
j=0

(�i)j

j!
�(s− j)(2x − 1)j (28)

valid for R (s)¿ 0 and real x with |2x − 1|61. An immediate representation obtains on setting
x = 0:

�(s) =−
∞∑
j=0

(−�i)j

j!
�(s− j)

valid for R (s)¿ 0. Note that if �(s) be real, then the imaginary part of the right-hand side vanishes,
and this gives certain �-series representations. On the other hand, using just the real part of the
right-hand side yields, for even integer s, the previous relation (27) for �(even); while for odd s
we obtain certain representations of �(odd). The Lerch-series approach will be discussed later as a
computational tool.

3. Evaluations for general complex arguments

Until the 1930s the workhorse of the evaluation art for the Riemann zeta function was Euler–
Maclaurin expansion. The standard Euler–Maclaurin formula applied to x 7→ x−s yields, for two
cuto� integers M;N :

�(s) =
N−1∑
n=1

1
ns
+

1
2Ns

+
N 1−s

s− 1 +
M∑
k=1

Tk;N (s) + E(M;N; s); (29)

where

Tk;N (s) =
B2k
(2k)!

N 1−s−2k
2k−2∏
j=0

(s+ j):

If �:=R (s)¿− 2M − 1 the error is rigorously bounded as [87,40]:
|E(M;N; s)|6

∣∣∣∣ s+ 2M + 1
� + 2M + 1

TM+1;N (s)
∣∣∣∣ :

One disadvantage of such expansions is universal, i.e., relegated not only to the Riemann zeta func-
tion. The problem is, one does not obtain a manifestly convergent expansion; rather, the expansion
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is of asymptotic character and one is compelled to rescale the cuto� parameters when attempting a
new precision goal. With this in mind, we proceed for much of the rest of this treatment to focus
on convergent series.
Since (s− 1)�(s) is entire, we may write

�(s) =
1

s− 1 +
∞∑
n=0

(−1)nn
n!

(s− 1)n:

The coe�cients are generally referred to as the Stieltjes constants and are given by

n = lim
m→∞

{
m∑

k=1

logn(k)
k

− logn+1(m)
n+ 1

}
:

Note that 0 =0:5772156649 : : : is the Euler constant (which we heretofore call just ). In principle,
the Stieltjes expansion here gives a scheme for evaluation of Euler’s constant, provided one has a
su�ciently sharp scheme for �(1 + �).
From (15), one has

�(s)�( 12s) =
�s=2

s(s− 1) +
∞∑
n=1

n−s�( 12s; �n
2) + �s−1=2

∞∑
n=1

ns−1�( 12 (1− s); �n2); (30)

in principle, a consummately convergent expansion, the only obstacle to high e�ciency being the
evaluations of the incomplete gamma function, given (at least for R (z)¿ 0) by

�(a; z) =
∫ ∞

z
ta−1e−t dt =

2zae−z

�(1− a)

∫ ∞

0

t1−2ae−t2

t2 + z
dt;

where the latter integral representation is valid for (an important region) R (a)¡ 1. But the evalua-
tion of �(a; z) is not as problematic as it may seem; many computer systems of today have suitable
incomplete-gamma machinery. There are the special cases �(s; 0) = �(s) and �(1; z) = e−z, with a
recursion

a�(a; z) = �(a+ 1; z)− zae−z (31)

that proves useful, as we shall see, in the art of value recycling. The recursion also reveals that
when a is a positive integer �(a; z) is an elementary function of z. There is an at least threefold
strategy for evaluating the incomplete gamma [44]. For a 6= 0;−1;−2; : : : one has an ascending
hypergeometric series and transformed counterpart:

�(a; z) =�(a)− a−1za1F1(a; a+ 1;−z);

=�(a)

(
1− zae−a

∞∑
m=0

zm

�(a+ m+ 1)

)
;

while for larger values of |z| one may use the continued fraction (when it exists – the convergence
issues for general complex a are intricate and fascinating, see [60] or the recent treatment [3]):

�(a; z) =
zae−z

z +
1− a

1 +
1

z +
2− a
1 + ...
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where pairs of consecutive numerators here take the form {n− a; n} as n runs through the positive
integers. For extremely large |z| values one has a standard asymptotic series:

�(a; z) ∼ za−1e−z
(
1 +

a− 1
z

+
(a− 1)(a− 2)

z2
+ · · ·

)

valid at least for I (z)¿ 0. Convergence and error-bounding issues can be resolved via proper
analysis of appropriate Mellin–Barnes contour integrals, as discussed in [48]. For the moment we
underscore the rapid convergence of series (30) by noting the behavior for positive real z¿�:

|�(� + it; z)|¡max(1; 2�)z�−1e−z:

This bound is quite convenient in practice, and means that only O(
√
D) terms of a summand in series

(30) are required to achieve D correct digits. A generalization of the incomplete-gamma series is
useful in higher dimensions, speci�cally when Epstein zeta functions (generalizations of the Riemann
zeta function) are to be evaluated [47].
Series (30) should always be considered as a possible expedient for evaluating �. We note that,

especially for large |I (s)|, the Riemann–Siegel formula can be superior, easier to apply in practice,
and also supports recycled evaluation of the Odlyzko–Sch�onhage type. But a recycling option also
exists – albeit in a di�erent sense and over di�erent complex domains – for relation (30); for example,
the recursion relation (31) allows recycling for certain arithmetic progressions of arguments, as we
shall see later.
It is sometimes noted that a formula such as (30) su�ers from precision loss when |I (s)| is large,

due to the factor �(s=2) on the left, which factor in such instances being an exponentially small one,
decaying as ∼ exp(−�|I (s)|=4). But there is the notion of using a free parameter in formula (30),
and furthermore allowing said parameter to attain complex values in order to reduce this precision
loss. The interesting work of Rubinstein [96] on more general L-function evaluation contains analysis
of this type, along with yet more incomplete-gamma representations. Other treatments of � on the
critical line depend also on incomplete-gamma asymptotics, such as the Temme formulae [89]. In
the same spirit there is ongoing research into the matter of casting series of type (30) in more
elementary terms, with a view to practical computation, by using a combination of: complex free
parameter, rigorous error bounds, and special expansions of the incomplete gamma at certain saddle
points [49].
From the integral representation (14) together with the generating series (23), we can choose

|�|¡ 2� and obtain

�(s)�(s) =− �s

2s
+

�s−1

s− 1 +
∞∑
n=0

n−s�(s; �n)− 2�s−1
∞∑
n=1

(
�
2�i

)2n �(2n)
2n+ s− 1 ; (32)

which is valid over the entire complex s-plane, provided we properly handle the limiting case
s → n for a negative integer n. In fact, the pole in �(s) on the left corresponds to the pole in the
relevant summand in the second sum, and we derive all at once evaluations (24). Now (32) is an
intriguing and sometimes useful expansion. The free parameter � allows one to test quite stringently
any numerical scheme: one must obtain invariant results for any � chosen in the allowed domain.
For positive integer arguments s, the incomplete gamma is elementary; furthermore, for such s and
rational �=(2�), the second sum in (32) has all rational coe�cients of the �(2n). We shall have
more to say about this expansion in Section 7.
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An interesting method for development of manifestly convergent series such as (30) and (32)
starts with representation (28) for the Lerch function. If we set x = 1

2 + i�=(2�) then, formally at
least

(1− 21−s)�(s) = �(s) =
∞∑
n=1

(−1)n−1
ns

e−�n −
∞∑
j=1

(−�)j

j!
�(s− j): (33)

It can be shown that this relation is valid for all complex s, with free parameter � ∈ (0; �]. Later,
in Section 5 we discuss speci�c applications for integer arguments s.
The Stark formula, also analyzed by Keiper [45,106], provides a di�erent approach for general

complex s and N a positive integer:

�(s; N ) =
1

s− 1
∞∑
k=1

(
N +

s− 1
k + 1

)
(−1)k

(
s+ k − 1

k

)
�(s+ k; N );

which by its very construction admits of interesting recursion schemes: one can write a Hurwitz-�
function that calls itself. Reminiscent of the Stark–Keiper approach is the formula

�(s) = lim
N→∞

1
2N−s+1 − 2N

2N−1∑
k=0

(−1)k
(k + 1)s

(
k−N∑
m=0

(
N
m

)
− 2N

)
(34)

for which it is possible to give a rigorous error bound as a function of the cuto� N and s itself
[23,27]. Very recently there appeared the interesting Woon formula, which amounts to a relation
involving Bernoulli numbers that generalizes the celebrated formula (24). We paraphrase the Woon
formula thus: for free real parameter w¿ 0 and R (s)¿ 1=w, one has

�(s) =−�(2�w)s−1sec( 12�s)
∞∑
n=0

(−1)nb(w; n)�(s)
n!�(s− n)

;

where we de�ne

b(w; n) = 1
2 + 2w

n+1∑
m=2

(
i
2�w

)2m ( n
2m− 1

)
�(2m):

Note that for positive even integer s, this whole scheme boils down to a tautology, because we
have intentionally replaced (on the right-hand side of the b de�nition) the Bernoulli coe�cients of
Woon’s original rendition with �(even) values. It is of interest that this formula becomes singular
only at odd integer values of s (where the secant diverges), although Woon has speci�ed a limiting
process in such cases [108].
We end this section with a discussion of practical issues for the Riemann–Siegel formula. This for-

mula and its variants amount to the most powerful evaluation scheme known for s possessed of large
imaginary part – the quite elegant and profound developments are referenced in [32,101,55,18,87,19,
64,63]. Another unique aspect of the Riemann–Siegel formula is that it is relatively di�cult to im-
plement, having several terms each requiring its own special strategy. Yet another is the fact that
di�erent variants apply best in di�erent complex regions, with di�erent error-bounding formula ap-
plicable in problem-dependent fashion. Loosely speaking, the Riemann–Siegel formulae apply in two
modes. Representatives of these modes are �rst, calculations on the critical line s= 1

2 + it (for which
the Z-function (19) is appropriate); and second, evaluations with R (s)¿ 1, as in the evaluation



J.M. Borwein et al. / Journal of Computational and Applied Mathematics 121 (2000) 247–296 259

algorithms for integral (3) (for which log � is desired). In all such instances any bounding formula
must take into account the decay of error as a function of the imaginary part t.
The Riemann–Siegel formula for � itself – as opposed to variants attendant on the Hardy Z-function

– can be written as an “approximate functional equation”:

�(s) =
M∑
n=1

1
ns
+ �(s)

M∑
n=1

1
n1−s

+ EM (s);

where M is a certain cuto� value, the �-function is from relation (21), and EM is an error term that,
although depending in a complicated way on the intended domain of s, can be bounded explicitly
for computations in certain useful regions of the complex s-plane [87]. We note that the formula
admits of more general rendition – in which the limits on the summands are unequal – and that
an optimized inequality of said limits may be called for when one is working o� the critical line.
There is a long-studied theory for this kind of approximation, and there remain open questions on
the precise asymptotic nature of the errors [101,63,55,18]. In particular, there is a distinct paucity
of useful explicit bounds for s o� the critical line, but research is ongoing into this dilemma [48].
The Riemann–Siegel formula above is certainly a streamlined rendition. The detailed error terms

are complicated [87,101,63,57]; moreover, the level of asymptotic correction, the number of error
terms to add in, and so on depend on the required precision and the complex domain of s. Ac-
cordingly, we shall give below just one practical variant and some explicit error bounds. As for the
Hardy function (19), a similarly stripped-down rendition is [64]

Z(t) = 2
∑
16n6�

n−1=2 cos(t log(n−1�)− 1
2 t − 1

8�) + O(t
−1=4); t ¿ 0;

where � =
√

t=(2�): It turns out the big-O error term here is best possible, because the indicated
error is actually 
±(t−1=4) (not surprising – for one thing, the discontinuity implicit in the summation
cuto� is of this magnitude). We now give just one reliable form of an expanded Riemann–Siegel
formula for Z . In their numerical researches on the critical zeros, Brent et al. [32,33,82] used the
following practical variant. To simplify notation, let m = b�c, z = 2(� − m) − 1. Then the variant
involves the angle # from de�nition (20), (21), which angle is relatively easy to calculate from
gamma-function asymptotics, and reads

Z(t) = 2
m∑

n=1

n−1=2 cos(t log n− #(t)) + (−1)m+1�−1=2
M∑
j=0

(−1)j�−j�j(z) + RM (t): (35)

Here, M is a cuto� integer of choice, the �j are entire functions de�ned for j¿0 in terms of a
function �0 and its derivatives, and RM (t) is the error. For computational rigor one needs to know
an explicit big-O constant. A practical instance is Brent’s choice M = 2, for which we need

�0(z) =
cos(12�z

2 + 3
8�)

cos(�z) ;

�1(z) =
1
12�2�

(3)
0 (z);

�2(z) =
1
16�2�

(2)
0 (z) +

1
288�4�

(6)
0 (z):
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All of this notational tangle may appear stultifying, but the marvelous bene�t is this: the errors
RM have been rigorously bounded, in computationally convenient fashion by various investigators –
notably Gabcke [57] – to achieve such as the following, for t¿200, M610:

|RM (t)|¡BMt−(2M+3)=4

for a set of bounding numbers:

{B0; : : : ; B10}= {0:127; 0:053; 0:011; 0:031; 0:017; 0:061; 0:661; 9:2; 130; 1837; 25966}:
Now the computationalist does not have to interpret big-O notation in numerical experiments. Perhaps
surprisingly, regardless of these beautiful bounds the Riemann–Siegel formula with just M = 1 – so
that R1 is in force – was enough to resolve the �rst 1.5 billion zeros, in the following sense. The
optimized strategy in [82] for �nding and proving that zeros lie exactly on the critical line, which
strategy stems from that used originally by Brent [32], was reported never to have failed with the R1
bound in hand. Incidentally, the zero-location method is ingenious: one uses known rigorous bounds
on the number of zeros in a vertical segment of the critical strip. For example the number of zeros
having t ∈ [0; T ] can be obtained from [101]

N (T ) = 1 + �−1#(T ) + �−1�arg �(s);

where # is the angle from assignment (20) and � signi�es the variation in the argument, de�ned to
start from arg �(2)=0 and varying continuously to s=2+iT , then to s= 1

2 + iT . If some number of
sign changes of Z(t) has been counted, and this count saturates the theoretical bound (e.g., bound
says N (t)¡ 15:6 zeros and we have found 15), then all the zeros in the segment must have been
found: they must lie precisely on R (s) = 1

2 and furthermore they must be simple zeros because Z
sustained changes in sign.
It should be pointed out that most of the work in these hunts for critical zeros is in the evaluation

of a �nite sum:
m∑

n=1

n−1=2 cos(t log n− #); (36)

where we recall that m= b�c is the greatest integer not exceeding √t=(2�). The authors of [82] in
fact vectorized this sum in supercomputer fashion. Computational issues aside, one can also envision
– by pondering the phase of the cosine – how it is that zeros occur, and with what (approximate)
frequency [101].
There is an interesting way to envision the delicate inner workings of the Riemann–Siegel for-

mula (35). Note the implicit discontinuity of the n-summation; after all, the summation limit m=b�c
changes suddenly at certain t. The idea is, the M terms of the j-summation must cancel said dis-
continuity, up to some hopefully insigni�cant error. As Berry and Keating note [18], the summation
limit m itself is a kind of critical-phase point during the analysis of those integral representations
of � that underlie the Riemann–Siegel formalism. Berry and Keating gave, in fact, an alternative,
free-parameter representation of the Z-function, which representation avoids discontinuities in sum-
mation. Though their leading sum is more complicated, it is also more accurate (instead of a discon-
tinuous cuto� there is a smooth, error-function decay near the Riemann–Siegel critical-phase point
m), and the same kind of accuracy-complexity tradeo� occurs for their ensuing correction terms.
Thus the Berry–Keating form is perhaps a viable computational alternative; at the very least it has
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theoretical importance in connection with semi-classical quantum theory and stationary states of
operators (see Section 8).
Since the Riemann–Siegel formula can be derived by application of saddle point methods to inte-

gral representations, Galway [58] has noted such integrals themselves are well suited for numerical
integration. This allows computation of � values to arbitrary accuracy while still retaining many of
the advantages of the Riemann–Siegel formula. Another advantage of this method is that the analysis
of the error terms is simpli�ed.
We observe that the Riemann–Siegel formula exhibits properties in common with both the Euler–

Maclaurin formula (29) and the incomplete-gamma expansion (30). As for the former similarity, the
Riemann–Siegel form is asymptotic in nature, at least in the sense that one chooses a set of about
M correction terms depending, in principle, on both the range of the argument and the required
accuracy. As for the similarity with the incomplete-gamma formula, note that both formulae tend to
require O(t1=2) summands – the Riemann–Siegel by its very construction, and the incomplete-gamma
by accuracy requirements. Of course, the Riemann–Siegel summands involve exclusively elementary
functions, which is a strong advantage as we have intimated. We shall have more to say about such
computational matters in Section 7.

4. Rational zeta series

Consider a natural specialization of the rational �-series (12), obtained by setting m = 1 in the
Hurwitz zeta function (13). We shall discuss representations of real numbers x in the form

x =
∞∑
n=2

qn(�(n)− 1); (37)

where the rational coe�cients qn are, in some appropriate sense, well behaved. It is not hard to prove
that any real x admits a rational �-series of the form (37) for unrestricted rational qn; but we are
concerned with expansions for which the qn are particularly simple in structure. One might demand
the |qn| be bounded, or constrain the denominator of qn to possess O(log n) bits, and so on. This
kind of series for some desired number x tends to be computationally convenient because, of course,
�(n) − 1 decays like ( 12)n for increasing n. It will turn out that many fundamental constants enjoy
simple representations. To mention a few: � (in fact any positive integer power of �), log �; log r
for any rational r, the Euler constant , the Catalan constant G, 1 the Khintchine constant K0
(actually (logK0)(log 2)), and any quadratic surd (A +

√
B)=C (including, for example, the golden

mean (1 +
√
5)=2) are representable with relatively simple, explicit coe�cients.

Let us consider some fundamental numbers from such disparate classes. First, there is a “repre-
sentation of unity”

1 =
∞∑
n=2

(�(n)− 1); (38)

1 G;  and �(5) are quintessential examples of constants whose irrationality though suspected is unproven. E�cient
high precison algorithms allow one to prove in these and many other cases that any rational representation must have an
enormous denominator. See for example [34].
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which has tremendous value in testing evaluation schemes – in particular the recycling schemes – for
the �(n) themselves. Curiously, this representation can be partitioned into disjoint sums over even
and odd n, respectively; the even-indexed sum having the value 3

4 , the odd-indexed sum having the
value 1

4 . There are attractive representations for log 2 and the Euler constant :

log 2 =
∞∑
n=1

�(2n)− 1
n

;

1− =
∞∑
n=2

�(n)− 1
n

: (39)

As we shall see, the convergence of these and many related series can be duly accelerated. To give
just one side example of the analytic depth of this subject, we note that Ramanujan once observed
that a formula of Glaisher:

= 2− 2 log 2− 2
∑

n=3; odd

�(n)− 1
n(n+ 1)

(as one can deduce from identities above and below this one) could be generalized to in�nitely
many di�erent formulae for  [93].
Many relations can be obtained upon manipulation of identities such as

∞∑
n=1

t2n(�(2n)− 1) = 1
2 − 1

2�t cot �t − t2(1− t2)−1; |t|¡ 2; (40)

∞∑
n=2

tn(�(n)− 1) =−t(+  (1− t)− t(1− t)−1); |t|¡ 2; (41)

which arise from expansions (25) and (26), respectively. Thus, for example, one may integrate (41)
to achieve a formal expansion involving the Euler constant:

t(1− ) + log�(2− t) =
∞∑
n=2

n−1tn(�(n)− 1); (42)

which expansion will have application later in Section 8. For t = 3
2 we obtain a representation of

log �:

log �=
∞∑
n=2

n−1(2( 32)
n − 3)(�(n)− 1):

Evaluations of rational �-series with simple coe�cients qn can take attractive forms. For example,
whereas (40) can be used to derive

∞∑
n=1

�(2n)− 1
22n

=
1
6

(43)

and one of many �-series for �:
∞∑
n=1

�(2n)− 1
42n

=
13
30

− �
8
; (44)
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it also leads to
∞∑
n=1

�(2n)− 1
82n

=
61
126

− �
16

√√
2 + 1√
2− 1 :

Not only can we establish such series for certain ��, with � a nontrivial algebraic number; we may
also insert appropriate roots of unity as t-parameters in (40) to obtain such as

∞∑
n=1

(�(4n)− 1) = 7
8 − 1

4�
(
e2� + 1
e2� − 1

)
:

We note that in (43), qn = (12)
n for n even, else qn = 0, provides an alternative representation

of unity, to be contrasted with (38). In fact, there are in�nitely many representations of unity. For
example, the case qn = 1 can be generalized to the following, valid for any nonnegative integer k.

1 =
∞∑

n=k+2

(
n− 1
k

)
(�(n)− 1):

Likewise (41) leads to interesting series, such as the following obtained by integration:
∞∑
n=2

�(n)− 1
(−1)n(n+ 1) =

1
2+

1
2 − log 2−

∫ 2

1
log�(z) dz

= 1
2(+ 3− log 2�)− log 2; (45)

which result having a theoretical application we encounter in Section 8.
There are yet other rational �-series that interrelate various Dirichlet series. One way to derive

such relations is to know, �rst, a cotangent integral such as

In:=
∫ 1=2

0
xn cot �x dx;

then use expansion (25) within the integral. Actually, this integral In is known exactly for every
positive integer n in terms of logarithms and values of �(odd) [50]. One example provides a relation
involving �−2�(3):

∞∑
n=1

�(2n)− 1
4n(n+ 1)

= 3
2 − 9 log 2 + 4 log 3 + 7

2�
−2�(3): (46)

Consideration of integrals over 0¡x¡ 1
4 provide representations for �

−1G, where G=1− 1
3

2
+ 1

5

2−
1
7

2
+ · · · is the Catalan constant:

∞∑
n=1

�(2n)− 1
16n(2n+ 1)

= 3
2 − �−1G − 1

4 log 2− 2 log 5 + 2 log 3 (47)

and
∞∑
n=1

�(2n)− 1
16n(2n+ 1)n

= 2�−1G − 3 + 5 log 5 + log �− 5 log 2− 3 log 3: (48)

Incidentally, not only rationals but logarithms of rationals as appear in (45)–(48) are easy to absorb,
if necessary, into the � sum. We shall encounter a general logarithmic representation later in this
section.
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A rational �-series can often be accelerated for computational purposes, provided one can resolve
the exact sum

∞∑
n=2

qn

an

for some contiguous sequence a=2; 3; 4; : : : ; A. One simply “peels o� ” these terms, leaving a series
involving the Hurwitz terms �(n; A+1), i.e., �-like sums starting with 1=(A+1)n. For example, it turns
out that one may peel o� any number of terms from (46) [45]. The exact corrections for a=2; 3; : : :
simply add to the detail of the logarithmic term. Perhaps the canonical example of “peeling” is the
 series (39) previously encountered. By peeling of N terms (including 1) from the � summand,
one has

=
N∑

j=1

j−1 − logN −
∞∑
m=2

m−1�(m;N + 1);

in which one witnesses the classical limit expression for  plus an exact (always negative) correction.
Computational complexity issues for this peeling – and other evaluation schemes – are discussed in
Section 7. For the moment, we observe that if peeling be taken to its extreme limits, there may be
no special advantage. For example, if we peel all summands in relation (46) for �(3), so that the
whole rational �-series vanishes, we get the peculiar relation

�(3) =
5�2
36

− 2�2
3

∞∑
n=1

{
− 5
12

− 2n2 + n(n+ 1)(2n+ 1)log (1 + 1=2n)

−n(n− 1)(2n− 1)log (1− 1=2n)
}
; (49)

a slowly converging series indeed. Thus, the primary motivation for peeling is to optimize sums for
actual computation – by peeling an optimal number of terms.
We next mention results of Flajolet and Vardi [56,102], who demonstrate that if f(z)=

∑
m¿2 fmzm

is analytic on the closed unit disk, then
∞∑
n=1

f(1=n) = f(1) +
∞∑
m=2

fm(�(m)− 1)

along with peeled such forms involving �(m;N ) for N ¿ 2. Some of the immediate results along
these lines are for �:

�= 8
3 +

∞∑
m=1

4−m(3m − 1)(�(m+ 1)− 1) (50)

and for the Catalan constant:

G = 8
9 +

1
16

∞∑
m=1

(m+ 1)4−m(3m − 1)(�(m+ 2)− 1):

The latter arises from the identity

(1− 3z)−2 − (1− z)−2 =
∞∑
m=1

(m+ 1)4−m(3m − 1)zm:
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It is of interest that we thus know rational �-series for both G and, as formula (47) yields, G=�.
One may also derive a series for �3, starting with the generating function f(z) = z3(1− 3z=4)−3 −
z3(1 − z=4)−3. In fact, any odd power of � can be cast �rst as a Dirichlet series (actually, a
rational multiple of the beta function, �(d) = 1−d − 2−d + 3−d − · · ·), then one constructs f(z),
quickly obtaining a series for �d. Flajolet and Vardi [56] were able to augment the aforementioned
number-theoretical representations described in Section 1 by casting such as the Landau–Ramanujan
and Hafner–Sarnak–McCurley constants in terms of convergent � constructs.
These curious and attractive series aside, there can actually be practical import for rational �-series,

thus motivating e�cient schemes for evaluation of the relevant �(n). One of the most interesting
applications is a result from the measure theory of continued fractions [109,11]. The celebrated
Khintchine constant K0, de�ned as the limiting geometric mean of the elements of almost all simple
continued fractions, can be bestowed with an e�cient series development. The development is partic-
ularly compelling in that one of the standard de�nitions of K0 is a cumbersome, slowly converging,
in�nite product. The rational �-series we have in mind is the Shanks–Wrench form [109] which for
N ¿ 2 can be peeled N − 2 times to yield [11]:

(logK0)(log 2)=
∞∑
n=1

�(2n)− 1
n

(
1− 1

2
+
1
3
− · · ·+ 1

2n− 1
)

=
N∑

k=3

log
(
1− 1

k

)
log

(
1 +

1
k

)

+
∞∑
n=1

�(2n; N )
n

(
1− 1

2
+
1
3
− · · ·+ 1

2n− 1
)
: (51)

The peeled form has been used, together with recycling methods for evaluating � at the even positive
integers, to obtain K0 to thousands of digits. In like manner, for negative integers p the p-H�older
means (for almost all reals) denoted Kp, of which the harmonic mean K−1 is an example, can be
given representations:

(Kp)plog 2 =
∞∑
n=2

Qnp(�(n+ |p|)− 1);

where all Q coe�cients have been given explicit rational form [11]. Again there is a peeled form,
and the harmonic mean K−1 in particular is now known, via such machinations, to more than 7000
decimal places [11].
Beyond the evident beauty of the world of �-expansions, there are important computational ques-

tions partially addressed by such high-precision e�orts. For example, is the geometric mean of the
partial quotients in the simple continued fraction for K0 equal to K0? The various formulae of [11]
relevant to the Khintchine constant and its relatives depend in general on all integer arguments n
for �(n), not just the even ones. For such reasons, rapid evaluation schemes – including recycling
ones – for positive integer n are always of special interest.
Here is another example of the utility of the series forms of our present interest. The classical

acceleration formula [79](4.28)

Cl2(�)
�

= 1− log |�|+
∞∑
n=1

�(2n)
n(2n+ 1)

(
�
2�

)2n
; |�|¡ 2�
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for the Clausen function

Cl2(�) =
∞∑
n=1

sin(n�)
n2

; � real

is useful for computing certain Dirichlet L-series values, e.g., Cl2(�=2) = G, the Catalan constant.
For actual computations an accelerated, “peeled” form

Cl2(�)
�

= 3− log
(
|�|
(
1− � 2

4�2

))
− 2�

�
log

(
2�+ �
2�− �

)
+

∞∑
n=1

�(2n)− 1
n(2n+ 1)

(
�
2�

)2n

could be used.
We next describe one way to generate a vast collection of examples of rational �-series, by estab-

lishing a certain connection with Laplace transforms. Observe the following formal manipulations,
where we disregard for the moment issues of convergence and summation interchange. Let � be
a �xed complex number and let f be the exponential generating series of the (presumed rational)
sequence f0; f1; : : :

f(x) =
∞∑
n=0

fn

n!
xn: (52)

Proceeding formally, we derive∫ ∞

0
f(x=a)e−�x dx=

∫ ∞

0
f(x=a)e−�x(ex − 1)−1

∞∑
k=1

xk=k! dx

=
∞∑
n=0

∞∑
k=1

a−nfn

k! n!

∫ ∞

0

e−�xxn+k

ex − 1 dx: (53)

Now, we invoke the integral representation (14) for the Hurwitz zeta function to arrive at the formal
Laplace transform∫ ∞

0
f(x=a)e−�x dx =

∞∑
n=2

�(n; � + 1)
n−2∑
k=0

(
n− 1
k

)
fk

ak
;

where a is so far arbitrary, but eventually to be constrained by convergence requirements. Up to
this point � is likewise unrestricted; if we specify �= 1 and assume the coe�cients fn be rational,
then we have a formal relation∫ ∞

0
f(x) e−ax dx =

∞∑
n=2

qn(�(n)− 1);

where the qn are explicit and rational:

qn =
n−2∑
k=0

(
n− 1
k

)
fk

ak+1
:

The recreational possibilities of the Laplace transform approach seem endless. One may use a
Bessel function of the �rst kind, f(x)= J0(x)=1− (x2=4)=(1!)2 + (x2=4)2=(2!)2−· · ·, whose Laplace
transform is known∫ ∞

0
J0(x)e−ax dx = (1 + a2)−1=2
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to obtain (again, merely formally as yet)

1√
1 + b

=
∞∑
n=2

(�(n)− 1)
n=2−1∑
k=0

(−b=4)k
(
2k
k

)(
n− 1
2k

)
; (54)

which already shows the importance of convergence considerations; evidently |b| must be su�ciently
small; certainly |b|¡ 2 su�ces. Now observe that for integers �; � a square root of �=� may be written√

�
�
=

1√
1 + (�=� − 1)

if �¿�, otherwise we use (�=�)
√

�=�, and so the �-series (54) applies with

b=min(�; �)=max(�; �)− 1
to yield a series for

√
q for any rational q and therefore any quadratic surd. Along these lines one

may establish in�nitely many di�erent rational �-series for the golden mean, � = (1 +
√
5)=2: For

example, setting b= 1=465 124, for which
√
1 + b ∈ Q[�], results in just one explicit series.

To represent � as a rational �-series, one may use the integral∫ ∞

0

e−x sin x
x

dx =
�
4

to obtain the series

�
4
=

∞∑
n=2

(�(n)− 1)
n=2−1∑
k=0

(−1)k
2k + 1

(
n− 1
2k

)

=
∞∑
n=2

n−1(�(n)− 1)F ((1 + i)n − 1− in); (55)

where interestingly enough the coe�cients qn vanish for n=4; 8; 12; : : :. This rational �-series for �,
like the form (50) and the aforementioned scheme for �odd, is nontrivial in the sense that, whereas
�2n, being a rational multiple of �(2n), is trivially representable, odd powers of � evidently require
some nontrivial analysis.
We have intimated that logarithms of rationals can always be given an explicit �-series. One may

show this by invoking the Laplace transform:∫ ∞

0

e−x(1− e−ax)
x

dx = log (1 + a)

to infer

log (1− a) =
∞∑
n=2

n−1(�(n)− 1)(1 + an − (1 + a)n):

Though this series has a �nite domain of convergence, one may forge a series for logN for any
integer N¿2 by using logN = −log (1 + (1=N − 1)). Thus logM=N for any integers M;N can be
cast as a rational �-series. And the story by no means ends here. One may take

f(x) =
sinh

√
x√

x
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to obtain a series for the error function at rational points z. (More precisely, one obtains a series
for

√
� exp(z2)erf (z).) As the error function is essentially an incomplete gamma function, there is

the possibility of casting more general incomplete gammas in rational �-series.
There is the intriguing possibility that one may e�ect numerical integration for some Laplace-

transform integrands by way of appropriate rational �-series. There is also the possibility of discov-
ering new identities by inversion; that is, one may work the Laplace transform technique backwards,
to observe (let us say formally, as before):

∞∑
n=2

qn(�(n)− 1) =
∞∑
k=0

fk;

where the fk are de�ned via the recurrence

(k + 1)fk = qk+2 −
k−1∑
j=0

(
k + 1

j

)
fj:

A di�erent – and elegant – integral transform technique was enunciated by Adamchik and Sri-
vastava [1], in the following form to which our Laplace-transform method stands as a kind of
complement. Working formally as before, one can quickly derive from representation (14) a general
relation

∞∑
n=2

qn(�(n)− 1) =
∫ ∞

0

F(t)e−t

et − 1 dt; (56)

where

F(t) =
∞∑
n=1

qn+1
tn

n!
:

As with our Laplace-transform technique, when one can do the integral one obtains a rational �-series.
Adamchik and Srivastava went on to derive in this fashion such attractive series as

∞∑
n=1

n−1tn(�(2n)− 1) = log ((1− t)�
√
t csc(�

√
t));

which can also be derived by integration of relation (40); and the following curiosity which involves
a derivative of �:

∞∑
n=2

�(n)− 1
(n+ 1)(n+ 2)

=− 1
6 (1 + )− 2�′(−1):

Adamchik and Srivastava also employed their �-summation methods together with a certain poly-
logarithm series from [11] to derive an alternative representation for the Khintchine constant:

(logK0)(log 2) = 1
12�

2 + 1
2 log

2 2 +
∫ �

0
t−1 log(t|cot t|) dt:

This kind of analysis shows again that a rational �-series can enjoy, quite beyond its natural allure,
some theoretical importance. Incidentally, when a successful Laplace-transform kernel is used in the
Adamchik–Srivastava formalism, the e�ects can be appealing. As just one example, if we use a
Bessel kernel not as in the previous quadratic-surd analysis, but for F in relation (56), the result is
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a convergent scheme for certain sums
∑

m(x
2 +m2)−s, which can in turn be summed over x to yield

such as
∞∑

N=1

d(N )
(1 + N 2)3=2

=
∞∑
n=1

4−n(�(2n+ 1)− 1)2n�(2n+ 1)(−1)n−1
(
2n
n

)

=0:197785480715675063088236301582 : : : ;

where d(N ) is the number of divisors of N . Though the relevant coe�cents this time are not rational
(as they involve the �(2n+1) themselves), the indicated numerical value would evidently be di�cult
to achieve without the aid of such manifest convergence.
Because the series of choice for practical calculation of some constants (such as the Khintchine

constant as just one example) is some form of rational �-series, we are interested in �-evaluations
for integer arguments, to which subject we next turn.

5. Integer arguments

Because of existing fast algorithms for computation of � and its powers in (22), not to mention
�nite recurrences between the �-values at even positive integer arguments, computations for positive
odd integer arguments are relatively more di�cult.
Our �rst observation is that various of the formulae of previous sections may be applied directly

when s is a positive odd integer. As just one example, the free-parameter choice � = i� in (32),
together with recursion relation (31), gives rise to an interrelation between the �-values at odd
positive integer arguments in the following form. Let m be a positive integer. With s= 2m+ 1, we
obtain

− (1− 2−2m−1)2�(2m+ 1)
(�i)2m

=
m−1∑
k=1

(1− 4−k)�(2k + 1)
(�i)2k(2m− 2k)!

+
1

(2m)!

{
log 2− 1

2m
+

∞∑
n=1

�(2n)
4n(n+ m)

}
: (57)

When m= 1, the formula yields

�(3) =
2�2
7

{
log 2− 1

2
+

∞∑
n=1

�(2n)
4n(n+ 1)

}
;

which can be peeled once to give relation (46). Such as �(5) could be obtained in terms of �(3) and
a convergent series, and so on. It is interesting that the weight factor 1=(2m)! of the troublesome
series part decays so rapidly; that is, we have for large m an “almost exact” interrelation between
the relevant �(odd), in the spirit of, say, the even-argument relation (27).
From the Lerch expansion (33) one can derive other interrelations amongst � evaluations. Using

the functional equation (17) we can write, for example:

3
4�(3) =

1
12 (1 + �

2)− 1
2 log 2 +

∞∑
n=1

(−1)n−1
n3en

− 2
∞∑
j=1

(
i
2�

)2j (1− 4j)�(2j)
2j(2j + 1)(2j + 2)

;

where the last sum on the right has purely rational summands decaying as �−2j.
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There are other similar series for �(odd), for example that of Boo [21]:

�(3) =−4�
2

7

∞∑
n=0

�(2n)
(2n+ 1)(2n+ 2)4n

and of Williams [110]:

�(3) =−2�2
∞∑
n=0

�(2n)
(2n+ 2)(2n+ 3)4n

:

Speci�c hyperbolic series, to be chosen as odd positive integer s is 1;−1 (mod 4), respectively,
are essentially due to Ramanujan and a�la Zagier run as follows:

p�(4p+ 1)=
1
�

2p+1∑
n=0

(−1)n(n− 1
2 )�(2n)�(4p+ 2− 2n)

−2
∑
n¿0

n−4p−1

exp(2�n)− 1
(
p+

�n
1− exp(−2�n)

)
; (58)

�(4p− 1) =−1�
2p∑
n=0

(−1)n�(2n)�(4p− 2n)− 2
∑
n¿0

n−4p+1

exp(2�n)− 1 : (59)

For p= 0, (58) evaluates to 1
4 and (59) to − 1

12 = �(−1), as might be hoped.
Note that there is no longer an in�nite set of �-values required; the sums involving � are �nite

in (58) and (59). Moreover, while these require evaluation of e2�k , the number e� can be computed
once and recycled.
Recently, similar but demonstrably di�erent series have been found (the �rst few cases empirically

by Simon Plou�e). A most striking example – which can be obtained, ex post facto, from [16,
Chapter 14, Entry 21(i)] – in implicit form is

(2− (−4)−n)

(
2

∞∑
k=1

1
(e2k� − 1)k4n+1 + �(4n+ 1)

)

−(−4)−2n
(
−2

∞∑
k=1

1
(e2k� + 1)k4n+1

+ �(4n+ 1)

)

=�4n+1
2n+1∑
k=0

(−1)k+1(4k + (−1)k(k−1)=2(−4)n2k) B4n+2−2k
(4n+ 2− 2k)!

B2k
(2k)!

; (60)

in which Bernoulli numbers can be replaced by even �-values using (24); and whose �rst case yields:

�(5) =−72
35

∞∑
k=1

1
(e2k� − 1)k5 −

2
35

∞∑
k=1

1
(e2k� + 1)k5

+
�5
294

:

A classical formula

�(2) = 3
∞∑
k=1

1

k2
(
2k
k

)
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has analog

�(4) =
36
17

∞∑
k=1

1

k4
(
2k
k

)

given in [41, p. 90], or see [22]. The next formula – which has no known single-term analogue
yielding �(5) – played a signal role in Ap�ery’s proof of the irrationality of �(3). (These matters are
discussed further in [25,24].) The precise formula, due to Hjortnaes [61] is

�(3) =
5
2

∞∑
k=1

(−1)k+1
k3
(
2k
k

) : (61)

There is however a two-term analogue yielding �(5), namely this due to Koecher [74,73]

�(5) = 2
∞∑
k=1

(−1)k+1
k5
(
2k
k

) − 5
2

∞∑
k=1

(−1)k+1
k3
(
2k
k

)
k−1∑
j=1

1
j2

(62)

and, more generally we have the following formal expansion in powers of z:

∞∑
k=1

1
k3(1− z2=k2)

=
∞∑
k=1

(−1)k+1
k3
(
2k
k

)
(
1
2
+

2
1− z2=k2

) k−1∏
j=1

(1− z2=j2):

Borwein–Bradley [25,24,4] established

�(7) =
5
2

∞∑
k=1

(−1)k+1
k7
(
2k
k

) + 252
∞∑
k=1

(−1)k+1
k3
(
2k
k

)
k−1∑
j=1

1
j4

(63)

and more generally the power series in z:

∞∑
k=1

1
k3(1− z4=k4)

=
5
2

∞∑
k=1

(−1)k+1
k3
(
2k
k

) 1
1− z4=k4

k−1∏
j=1

j4 + 4z4

j4 − z4
: (64)

Note that (64) contains (61) and (63) as its constant term and next term (coe�cient of z4), re-
spectively. Formula (64) was discovered empirically and reduced in [25] to an equivalent �nite form
by a process of “creative telescoping” and analytic continuation. This �nite form was subsequently
proven by Almkvist and Granville. Formulae (61)–(63) are well suited for numerical computation
due to the fact that the series terms decay roughly geometrically with ratio 1

4 . Algorithms 1, 2 and 3
below are based on the Hjortnaes formula (61), the Koecher formula (62), and the Borwein–Bradley
formula (63), respectively [25].
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Algorithm 1. Given D; compute �(3) to D digits using (61). Computations are performed to D
digits.

N = 1 + b5D=3c; c = 2; s= 0;
for n= 1 to N do begin

s= s+ (−1)n+1=(n3c);
c = c(4n+ 2)=(n+ 1);

end;
return 5s=2;

Note that this kind of algorithm can be naturally extended to yet more e�cient �(3) series, such as
the accelerated formula (68) appearing later in this paper.

Algorithm 2. Given D; compute �(5) to D digits using (63). Computations are performed to D
digits.

N = 1 + b5D=3c; a= 0; c = 2; s= 0;
for n= 1 to N do begin

g= 1=n2; s= s+ (−1)n+1(4n− 5a)=(n3c);
c = c(4n+ 2)=(n+ 1); a= a+ g;

end;
return s=2;

Algorithm 3. Given D; compute �(7) to D digits using (63). Computations are performed to D
digits.

N = 1 + b5D=3c; a= 0; c = 2; s= 0;
for n= 1 to N do begin

g= 1=n2; s= s+ (−1)n+1(5a+ g)=(n3c);
c = c(4n+ 2)=(n+ 1); a= a+ g;

end;
return 5s=2;

The operational complexity of Algorithms 1–3 will be discussed in Section 7. Generally speaking,
for �xed precision (say D digits) these are the fastest schemes available for the indicated �(integer)
values. One should keep in mind that there are asymptotically (very large D) even faster ways of
handling the relevant summations, using a so-called FEE method also discussed in Section 7.

6. Value recycling

We have mentioned the multivalue computations of Odlyzko and Sch�onhage [87], such an approach
being of interest for complex s lying, say, in some (complex) arithmetic progression. It turns out that
for certain sets of arguments with integer di�erences (the arguments not necessarily in arithmetic
progression) one can invoke alternative value-recycling schemes. The basic notion of recycling here
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is that previously calculated �-values – or initialization tables of those calculations – are re-used
to aid in the extraction of other �-values, or many �-values at once are somehow simultaneously
determined, and so on. So by value recycling we mean that somehow the computation of a collection
of �-values is more e�cient than would be the establishment of independent values.
First, one can use either of (30) or (32) to e�ciently evaluate � at each of N arguments {s; s+2; s+

4; : : : ; s+2(N − 1)} for any complex s. This approach might be fruitful for obtaining a collection of
�-values at odd positive integers, for example. The idea is to exploit the recursion relation (31) for the
incomplete gamma function and thereby, when N is su�ciently large, e�ectively unburden ourselves
of the incomplete gamma evaluations. One may evaluate such as �({s=2}; x); �({(1−s)=2}; x) where
{z} denotes generally the fractional part of z, over a collection of x-values, then use the above
recursion either backward or forward to rapidly evaluate series terms for the whole set of desired
�-values. Given the initial �({s=2}; x) evaluations, the rest of the calculation to get all the �-values
is sharply reduced. In the case that the {s+2k} are odd integers, the precomputations involve only
�(0; x) and �(1=2; x) values; known classically as exponential-integral and error-function values. Ref.
[45] contains explicit pseudocode for a recycling evaluation of �(3); �(5); : : : ; �(L) via series (30), in
which evaluation one initializes error function and exponential-integral values, respectively:

{�( 12 ; �n2): n ∈ [1; bDc]}; (65)

{�(0; �n2): n ∈ [1; bDc]};

where D decimal digits of precision are ultimately desired for each � value. The notion of “recycling”
takes its purest form in this method, for the incomplete-gamma evaluations above are reused for every
�(odd).
A second recycling approach, relevant for even integer arguments, involves a method of series

inversion pioneered by J. P. Buhler for numerical analyses on Fermat’s “Last Theorem” and on the
Vandiver conjecture [36–38]. One uses a generating function for Bernoulli numbers, and invokes the
Newton method for series inversion of the key elementary function. To get values at even positive
integers, one may use an expansion related to (25). One has

sinh(2�
√
t)

4�
√
t

2�2t
cosh(2�

√
t)− 1 =−

∞∑
n=0

(−1)n�(2n)tn;

which we have derived and written in this particular form to allow the algorithm following. Note
that we have separated the left-hand side into two series-dependent factors, each in the t variable:
one series being essentially of the form (sinh

√
z)=

√
z and the other being (cosh

√
z−1)=z. The idea,

then, is to invert the latter series via a fast polynomial inversion algorithm (Newton method). Using
t as a place-holder throughout, one then reads o� the �-values as coe�cients in a �nal polynomial. In
the algorithm display following, we assume that �(2); �(4); : : : ; �(2N−2) are desired. The polynomial
arithmetic is most e�cient when truncation of large polynomials occurs at the right junctures. For a
polynomial q(t), we denote by q(t)mod tk the truncation of q through the power tk−1 inclusive; that
is, terms tk and beyond are dropped. Also in what follows, a polynomial multiplication operation is
signi�ed by “∗”.
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Algorithm 4. Recycling scheme for a sequence �(0); �(2); �(4); : : : ; �(2(N − 1)).
(1) [Denominator setup]

Create the polynomial f(t) = (cosh(2�
√
t)− 1)=(2�2t);

through degree N (i.e.; through power tN inclusive);
(2) [Newton polynomial inversion; to obtain g:=f−1]

p= g= 1;
while (p¡ deg(f)) do begin

p=max(2p; deg(f));
h= fmod tp;
g= (g+ g ∗ (1− h ∗ g))mod tp;

end;
(3) [Numerator setup]

Create the polynomial k(t) = sinh(2�
√
t)=(4�

√
t); through degree N ;

g= g ∗ k mod t2N−1;
For n ∈ [0; 2N − 2]; read o� �(2n) as −(−1)n
times the coe�cient of tn in polynomial g(t).

It is important to note that this algorithm can be e�ected in either numerical or symbolic mode.
That is, in step (1) the polynomial in question can have oating point coe�cients, or symbolic ones
with their respective powers of � and so on. If symbolic mode is in force, the � values of the indicated
�nite set are all exact, through �(2N−2) inclusive. The method has actually been used – in numerical
mode so that fast Fourier transform methods may also be applied to the numerical multiplications – to
calculate the relevant �-values for high-precision values of the Khintchine constant [11]. Incidentally,
if one worries about memory storage in such a Buhler inversion, there is a powerful technique called
“multisectioning”, whereby one calculates all the �(2k) for k lying in some congruence class (mod 4,
8 or 16 say), using limited memory for that calculation, then moving on to the next congruence class,
and so on. Observe �rst that, by looking only at even-indexed Bernoulli numbers in the previous
algorithm, we have e�ectively multisectioned by 2 already. To go further and multisection by 4, one
may observe

x cosh x sin x ± x cos x sinh x
sinh x sin x

= 2
∑
n∈S±

Bn

n!
(2x)n;

where the sectioned sets are S+ = {0; 4; 8; 12; : : :} and S− = {2; 6; 10; 14; : : :}. The key is that the
denominator (sinh x sin x) is, perhaps surprisingly, x2 times a series in x4, namely we have the
attractive series

sinh x sin x =
∑
n∈S−

(−1)(n−2)=42n=2 xn

n!
; (66)

so that the key Newton inversion of a polynomial approximant to said denominator only has
one-fourth the terms that would accrue with the standard Bernoulli denominator (ex − 1) (and
one-half as many terms as required in Algorithm 5). Thus, reduced memory is used to establish a
congruence class of Bernoulli indices, then that memory is reused for the next congruence class,
and so on. Thus, these methods function well in either parallel or serial environments.
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Multisectioning was used by Buhler and colleagues – as high as level-16 sections – to verify
Fermat’s “Last Theorem” to exponent 8 million [37]. They desired Bernoulli numbers modulo primes,
and so employed integer arithmetic, but the basic Newton iteration is the same for either symbolic
(rational multiples of powers of �) or numerical (oating-point) �-values.
A third approach is to contemplate continued fraction representations that yield �-values. For

example, the well-known fraction for
√
z coth

√
z gives

�2z

3 +
�2z

5 +
�2z
7+...

= 2
∞∑
n=1

(−1)n−1�(2n)zn:

The computational advantage here would obtain if one already had in hand an e�cient, continued
fraction engine. There is also the possibility of fast evaluation of the convergents, although it is
unclear whether this technique could be brought to the e�ciency of the Buhler approach above.
Incidentally, if one desires not values at the even positive integers but the actual Bernoulli numbers
as exact rational numbers, there is an alternative fraction due to Bender:

1

1 +
b(1)z

1 +
b(2)z

1 +
b(3)z
1+...

= 1 + 6
∞∑
n=2

B2nzn−1

with

b(n) =
n(n+ 1)2(n+ 2)
4(2n+ 1)(2n+ 3)

:

Note that the series does not converge in any obvious sense; it is a symbolic series. Again,
this form might be recommended if a good continued fraction calculator were in place. As a last
alternative for fast evaluation at even positive integer arguments, there is an interesting approach
of Plou�e and Fee [90], in which the Von-Staudt–Clausen formula for the fractional part of Bn is
invoked, then asymptotic techniques are used to ascertain the integer part. In this way the number
B200000 has been calculated in exact, rational form. Yet another strategy for Bernoulli numbers –
untested as far as we know – is to resolve Bn via Chinese remainder methods, where one would
establish via Voronoi formulae the values Bn(modpi) for su�ciently many small primes pi.
A fourth approach stands as a kind of complement to the previous, even-argument method. There

is actually a way to calculate �-values at consecutive positive integers in recycled fashion. Now, the
generating function will not be a cotangent function but the  function de�ned in (26). Previous
implementations of a  -based recycling algorithm, as in [45], do work but are not of the fast
algorithm class. More recently [48], there has appeared an asymptotically “fast” rendition of the
idea, which method we now briey describe.
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Since the standard gamma function can be estimated via such approximations as [22]

∣∣∣∣∣�(z)− Nz
6N∑
k=0

(−1)kN k

k!(k + z)

∣∣∣∣∣62Ne−N ;

valid for real z ∈ [1; 2], one might expect that the kind of sum appearing would, if the series inversions
of the (k+z) were carried out as polynomials in z, provide a reasonable series for the  function (the
logarithmic derivative of �). Indeed, it turns out [48] that the logarithmic derivative of a function
with summation limit 4N , namely

g(z) =
4N−1∑
k=0

(−1)kN k

k!(k + 1− z)

is an appropriate power series in z, in fact

d
dz
log g(z) ∼ (logN + ) + �(2)z + �(3)z2 + �(4)z3 + · · · ;

in some appropriate asymptotic sense [48]. Thus, the same polynomial arithmetic ideas as for the
Buhler method previous can be used in principle to evaluate � at consecutive positive integer argu-
ments. The following algorithm display follows the treatment in [48]:

Algorithm 5. Recycling scheme for a collection of the L values: �(2); �(3); �(4); : : : ; �(L+ 1).

(1) [Set precision]
Choose a power-of-two N; such that 2−N is less than
the required precision ( i.e.; N is greater than the required bit-precision):
and also N¿L (a common condition in numerical settings):

(2) [Quotient array]
Create g[k] = P[k]=Q[k]; for k ∈ [0; 4N − 1]; where

P[k] = (−N )k ; Q[k] = k!(k + 1− z);
with z being a place-holder as in standard polynomial computations.

(3) [Resolve g function]
p= 1;
while p62n do begin
for q= 0 to 4N − 1− p step p do begin

g[q] = g[q] + g[q+ p];
Resolve the new g[q] into numerator=denominator;
each clipped mod zL+1);

end;
p= 2p;

end;
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(4) [Monic reversion]
Now g[0] = P[0]=Q[0]; each of P;Q being of degree at
most L; so force a reverse-monic property; by dividing
each of P;Q through by its constant coe�cient;

(5) [Inversion]
Perform Newton inversions as in step (2) of Algorithm 4;
to create the reciprocal polynomials P−1 and Q−1;

(6) [Coe�cient computation]
Compute the coe�cients Rk in the polynomial

R(z) =
L∑

k=0

Rkzk = ((dP=dz)P−1 − (dQ=dz)Q−1)mod zL+1;

(7) [Read o� the � values]
Optionally read o�  ∼ R0 − logN and in any case
read o�; for k ∈ [2; L+ 1]; the desired � approximations as

�(k) ∼ Rk−1:

A typical experiment with Algorithm 5 works out as follows. Take N=L=16, meaning that degree-16
polynomials will be used and we shall obtain in recycling fashion a set of 16 separate � values,
together with an approximation to :

R(x)∼ logN + 0:57721 + 1:64493x + 1:20205x2 + 1:08232x3 + 1:03692x4 +
· · ·+ 1:000122713347x12 + · · · ;

where we indicate good digits by virtue of their appearance. Note that �(13) as the coe�cient of
x12 is more accurate than the low-lying coe�cients. This trend is universal to the algorithm, and in
some ways is a good thing because if the values �(n)− 1 are employed, we enjoy relative precision
after the 1 is subtracted. Note also that even the low-lying coe�cients have errors of order 2−16 as
expected. Of course, the algorithm can be modi�ed to yield only values at odd positive integers,
for example by subtracting o� at a key juncture a truncated cotangent series. Detailed error analysis
and asymptotics are described in [48], though we do touch upon complexity issues for Algorithm 5
in the next section. It should also be observed that fast, single-argument evaluation of the gamma
function and functions such as our g(z) were worked out by Karatsuba [66–69], about which we
have more to say in the next section; so perhaps her methods may be used to accelerate even further
the series computations of Algorithm 5.

7. Computational complexity

Herein we focus on evaluations of �-values for integer arguments and arguments in certain arith-
metic progressions. However, in a spirit of completeness, let us �rst comment on the complexity
issue for those analytic number theory computations briey reviewed in Section 1. Consider �rst the
highly important evaluation of �(1=2+ it) where t is positive but otherwise unrestricted; and say we
desire the evaluation to have a �xed precision (one only needs enough precision actually to locate
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zeros, say) but that t is unrestricted. It should be stated right o� that for this problem there is no
known polynomial-time algorithm, say an algorithm of O(log k t) operation complexity to perform
a single � evaluation. We note the interesting remarks in [19], where the author suggests outright
that the calculation of �( 12 + it) is fundamentally of exponential operation complexity O�(t1=2−o(1))
to achieve errors bounded by a �xed � and furthermore that this is a special property of the critical
line (indeed, o� the critical line the complexity is reduced). Whereas it is known that the classi-
cal Euler–Maclaurin approach has operation complexity O(t), the Riemann–Siegel formula allows
O(t1=2+�). Indeed, we recall that most of the work for the latter method is a sum over O(

√
t) ele-

mentary summands. Furthermore, the Odlyzko–Sch�onhage approach allows the (approximately T 1=2)
critical zeros of the interval t ∈ [T; T + T 1=2) to be found in O(T 1=2+�) operations [85–87]. So the
average operation complexity per critical zero works out to be impressive: O(T �). To summarize,

Riemann–Siegel formula (35), R (s= � + it)¿ 0 �xed, t ¿ 0 arbitrary, and precision �xed:

Operation complexity O(t1=2+�).

Odlyzko–Sch�onhage enhancement, for t ∈ [T; T + T 1=2]:

Operation complexity O(T �) per each of O(T 1=2+�) � values.

Note that the Odlyzko–Sch�onhage method enjoys its tremendous e�ciency because it is, in our
present sense of the word, a recycling scheme. As Ref. [87] describes, the evaluation of multiple
ordinates t simultaneously can be done via FFT-like methods, in particular rational-complex function
evaluation which can also be considered as fast interpolation along the lines of the works of Dutt
et al. [53] and Dutt and Rokhlin [54]. The essential idea is to attempt to perform sums of the form
(36) for a set of t values (which may or may not be equispaced). Sometimes, depending on the
problem at hand, a simple FFT approach with the Euler–Maclaurin formula (29) is a good option.
For example, �(x) calculations, for moderate x, carried out in the style described after relation (3)
may bene�t from such a simpli�ed approach [47].
Incidentally, the Euler–Maclaurin series (29) for �xed precision and arbitrary t is not as good as

the Riemann–Siegel series, in fact, Euler–Maclaurin formula (29), R (s = � + it)¿ 0 �xed, t ¿ 0
arbitrary, and precision �xed:

Operation complexity O(t1+�).

Incidentally, because the Euler–Maclaurin method also starts out with a sum of terms n−�−it , the
Odlyzko–Sch�onhage acceleration applies equally well, with the ultimate complexity being reduced
accordingly to O(T 1=2+�) per zero for resolution of O(T 1=2+�) zeros in [T; T + T 1=2]. Note also that
the Bernoulli components of the Euler–Maclaurin sum can be obtained in recycled fashion, as we
discuss below. Such methods can sometimes pull computationally (perhaps not always theoretically)
important logarithmic factors o� complexity bounds. There is a moral here: regardless of superior
asymptotic behavior, the Riemann–Siegel formulae may sometimes involve too many practical details
when Euler–Maclaurin, far simpler to implement, and susceptible to some interesting optimizations,
would su�ce. The Euler–Maclaurin scheme can be used, for example, in serious practical evaluations
of � (see, for example, [40], where careful Euler–Maclaurin error bounds are developed).
Unlike the analysis for �xed � and large t, most every other aspect of the present treatment

involves the following scenario: the argument s, or arguments {s1; s2; : : :} (and their population) are
�xed, and we consider varying the precision, measured say as D digits.
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Let us start with the incomplete-gamma series (30). Because an incomplete gamma function can
be evaluated via fast Fourier transform acceleration in O(D1=2 log2D) operations [22], and because we
require O(D1=2) summands of either sum, and because elementary functions (e.g. arbitrary powers)
require O(log k D) operations, for some k [30,31], we conclude: Incomplete-gamma formula (30),
for �xed complex s, to D-digit precision:

Operation complexity O(D1+�).

Recycling enhancement to incomplete-gamma formula (based on precomputations (65)), for set of
arguments {s; s+ 2; s+ 4; : : : ; s+ 2(N − 1)}:
Operation complexity O(D1=2+�) per � value.

This average complexity in recycling mode is impressive; we know of no simple schemes for say
�(odd) that run faster than O(D); however see the material later in this section for low bit-complexity
schemes that exploit dynamically changing precision, such as Karatsuba’s FEE method and possible
hybrid alternatives that might stem from it.
Because the values at even positive integers appear in so many studies, we next discuss the Buhler

recycling scheme, Algorithm 4. It is evident that the even-argument values �(2); : : : ; �(2N ) can all
be obtained in O(logN ) Newton iterations. However, these iterations can be done with dynamically
increasing precision, so that the asymptotic complexity is dominated by that for the last Newton
step: a single polynomial multiply for polynomials of degree O(N ). One can achieve such by using
a fast convolution algorithm for the polynomial multiplication, such as the Nussbaumer method [45],
thus obtaining all the indicated �-values in O(N logN ) operations. To summarize

Buhler recycling scheme, Algorithm 4, for �(0); �(2); �(4); : : : ; �(2N − 2) each to D-digit precision:

Operation complexity O(logN ) per � value.

This estimate now has implications for various formulae, such as the Bernoulli-based series (32)
and the Euler–Maclaurin method (29), as both depend on the values at even positive integers.
As for the more general recycling scheme of Algorithm 5, the complexity analysis can be

found in [48], the essential idea being that the recombination of polynomials in step (3) involves
N=2; N=4; N=8; : : : pairwise polynomial-ratio combinations, respectively, on successive loop passes, and
these are of growing degree, yet fast polynomial multiplication can be used, with the result that the
complexity is O(N log2 L) operations for the very construction of the g function as the ratio of two
polynomials each of degree L. We conclude:

Psi-function recycling scheme, Algorithm 5, for ; �(2); �(3); : : : ; �(L + 1) each to D-digit precision
(with L ∼ D also):

Operation complexity O(L−1N log2 L) per each of the L evaluations of �.

Note that for L ∼ N , equivalently: one desires about D di�erent � values each to D digits, the
average cost is O(log2D) per value. This is somewhat worse than the cost of Algorithm 4, but
certainly falls into the “fast algorithm” category: for both algorithms we could say that “polynomial
rate” is achieved, meaning polynomial time complexity O(log k D) as a per-evaluation average.
Next, we look at the Euler–Maclaurin scheme. For precision 10−D we can take M =O(D=logN )

in the Bernoulli summation of series (29). But we have just estimated the operation complexity
as O(M logM) for the generation of the relevant Bernoulli numbers. As general exponentiation
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is O(log k D) operations for some k [30,31], the work for �rst summation in the Euler–Maclaurin
formula requires O(N log k D) operations. Thus for any (�xed) complex s, we end up with operation
complexity O(N log k D) + O(D log(D=logN )=logN ), and we conclude:

Euler–Maclaurin formula (29), for s �xed, D-digit precision:

Operation complexity O(D1+�).

Of course, for integer s the Euler–Maclaurin method will – as with most other schemes – be
somewhat more e�cient.
For the Bernoulli series (32) to D-digit precision, we again apply the recycling of Buhler for

O(D=log(1=�)) summands in the second sum, with O(D=�) summands in the �rst. This means we
optimize the free parameter as: � ∼ (log logD)=logD and conclude:

Free-parameter formula (32), for s �xed, D-digit precision:

Operation complexity O(D logD=log logD).

This is of course also O(D1+�), but the analysis is particularly straightforward for the free-parameter
formula, so we exhibit the detailed complexity. Note that the asymptotic decay of the free parameter
� is consistent with the hard constraint on the allowed range 06�¡ 2�. Incidentally the “peeled
series” approach, whereby one peels terms from a rational-� series, is in complexity terms very
similar to the free-parameter series. Writing

∞∑
n=2

qn(�(n)− 1) =
M∑

m=2

∞∑
n=2

qn

ms
+

∞∑
n=2

qn�(n;M + 1); (67)

we see that if the last summation above is over n ∈ [2; N ] then for D-digit precision we require
N = O(D=logM). If the (we presume closed-form) peeled terms are each of polynomial operation
complexity, and we use recycling, we have overall cost O(M log k D) +O(D logD=logM). If we set
M ∼ D=log k D and N ∼ D=logM we obtain:

General peeled-series form (67), for s �xed, D-digit precision:

Operation complexity O(D1+�).

Heretofore in this section we have concentrated on operation counts, whereby one takes each sum-
mand of a series to full precision. Also, s arguments have heretofore been general. But for certain
series of our immediate interest, notably some old and new series for �(odd), one can adroitly adjust
precision so that very low bit complexity is achieved. Our �rst observation is that a modern series
having rational summands, and exhibiting linear convergence can be evaluated to D good digits, for
�xed integer argument s, in N =O(D) summands. Thus the operation complexity is simply:

Rational-summand series, such as (61) and many others, as in Algorithms 1–3, for D-digit precision:

Operation complexity O(D).

This is as good as any of the previous complexity estimates, except for the recycling cases (when
the average, per-value complexity may be genuinely less than O(D)); furthermore the terms in the
various series are generally simple in structure.
But now we wish momentarily to drop the notion of “operation complexity for D digits” and

concentrate instead on bit complexity for, let us say, N -bit precision. In modern times there has been
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a revolution of sorts in the matter of bit-complexity estimates for � evaluation, or for that matter
the evaluation of more general series. The idea is to combine subseries of a given, well-convergent
series in certain, e�cient ways, employing recursion relations and other algebraic expedients cleverly.
We shall refer to this as the fast E-function evaluation (FEE) method of Karatsuba. The algorithm
has sometimes been called “binary splitting,” which was foreshadowed in the works of Sch�onhage
and Brent [30,31,97,22] for decimal-base conversion, calculation of fundamental constants and some
elementary functions; yet was brought into powerful, general, and rigorous form by Karatsuba,
resulting in unprecedented low bit complexity for hypergeometric series of algebraic parameters and
argument (see [65–70], Ref. [71] being especially informative).2

One way to think of the FEE method is to imagine, in the words of [59], pushing “as much
multiplication work as possible to the region where multiplication becomes e�cient”. The complexity
of the FEE method, when said method applies, turns out to be

O(M (N )log2 N );

where M (N ) is either the bit complexity of multiplying two integers each of N bits by grammar-school
(naive, O(N 2) means), or the bit complexity that is the lowest known. As for minimal-complexity
multiplication, the celebrated Sch�onhage–Strassen bit-complexity bound, namely [97]

M (N ) = O(N logN log logN );

thus yields a bit complexity for the FEE method in the form

O(N log3 N log logN )

for evaluation of appropriate series to N -bit precision, which bound can be thought of as O(N 1+�)
and thus “near-optimal”; and we remind ourselves that this bound thus applies to a very wide class of
series.3 In this class are computations of certain constants such as �-values at odd positive integers,
Euler’s constant , powers ex for bounded x, and generally to series whose kth terms are rational,
possessed of O(log k) bits in numerator and denominator; and yet more generally to hypergeometric
series with suitably bounded algebraic argument and parameters [71].
It should be remarked right o� that the FEE method gives no gain whatsoever – over direct

summation – if standard, grammar-school multiplication (of bit-complexity O(NN ′) for two respective
N; N ′-bit operands) be used. To see this, consider a typical series to which the FEE method applies:

S =
∞∑
n=0

a(n)
b(n)

n∏
j=0

p(j)
q(j)

;

where each of a; b; p; q is an integer-valued function of O(log n) bits, and assume (as is typically
required for the FEE method) that a truncation error bound of 2−N , for N -bit precision, obtains after
O(N ) terms of the series. It is not hard to see that if each term be evaluated to N bits, we require
under grammar-school multiplication O(N log j) bit operations per term, so that the summation of
the required N terms has bit complexity O(N 2 logN ). Thus if the grammar-school bound is used

2 There is also a succinct and accessible modern treatment of such technique, by Haible and Papanikolaou [59], yet
those authors unfortunately were unaware of the original works of Karatsuba. For reasons of scholarship therefore, we
choose to refer to the general series-manipulation paradigm in question as the FEE method.

3 Incidentally, there is another multiplication algorithm enjoying the same bit complexity as Sch�onhage–Strassen; we
speak of Nussbaumer convolution which is at least as easy to implement, as described in say [45,51].
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with FEE, the bit complexity is O(M (N )log2 N ) = O(N 2 log2 N ) which amounts to no gain over
conventional summation.
For the present compendium we have carefully chosen an illustrative FEE example. It is neither

the simplest (perhaps the calculation of e or some such constant would qualify for that), nor is it
the most recondite (one can even apply FEE to special functions of applied science, such as Bessel
functions and so on). But the example shows the essential ingredients of FEE, and intentionally
moves a little away from the above S form to underscore the possibility of algebraic-irrational
arguments. Consider the polylogarithm evaluation

L= Li3(�−2) =
∞∑
n=1

�−2n

n3
;

where �=(1+
√
5)=2 is the (patently algebraic) golden mean. This L constant is especially interesting

because knowing it is essentially to know �(3), as we see discuss in Section 8. Now if we truncate
the L series through the (n = N )th term inclusive, we have at least N -bit precision, so let us for
algorithmic convenience choose some suitable N = 2k , and note �rst that

N∑
n=1

�−2n

n3
=

N=2∑
m=1

�2m−1
8m3 + (8m3 − 12m2 + 6m− 1)�

8m3(2m− 1)3 ;

where we have pairwise combined terms from the left-hand sum, to forge a half-length sum with, in
Karatsuba’s words, “obvious denominators”. Likewise, the right-hand sum can be pairwise processed
to forge a yet shorter sum:

N=4∑
p=1

�4p−3
A+ B�

C
;

where A; B; C are more complicated polynomials in the index p, e.g., A; B now have degree 6. In
general one obtains, as Karatsuba showed, a recurrence relation for ever more complicated numerator
terms. In our case, one must use the quadratic reduction �2 = 1 + � to keep all numerators in Z[�].
Upon detailed analysis of the work to perform the pairwise combinations and so on, one �nds that
the bit complexity to perform k = lgN such series contractions – which work yields just one �nal
term, a singleton summation – is a sum:

k∑
j=1

N
2j

M (O(2j logN )) = O(M (N )log2 N )

for either grammar-school or minimal-complexity multiply, as claimed.
Let us perform an example of evaluation of the L constant through N =16 summands. This means

that we carry out four recursion levels, obtaining on the �rst level eight terms:{
�
8 + �
8

; : : : ; �15
4096 + 3375�
13824000

}
;

the sum over which eight being exactly the original 16-fold sum intended. At recursion bottom we
end up with a solitary term, namely

L ∼ 842439095385706230219− 376615379847138777145√5
748737728234496000

∼ 0:4026839629 : : : ;
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where we have taken the liberty to cast the result in the form of a surd (a+ b
√
5)=c. The numerical

value is incidentally correct to the 10 places shown. To convey an idea of the e�ciency of the
method, we note that for N =32 summands and so �ve recursion levels, the numerical value of the
solitary surd is correct to 17 decimals, which makes sense because to jump from 16 to 32 summands
we only have to do a little more than twice the multiplication work.
It is especially intriguing that the �nal result of such FEE processing is not only a single term,

but an exact term in the sense that it could be used later in a truncated series of twice the length,
i.e., the single term in hand can act as the left-hand term of a one-higher recursion level. Likewise,
FEE is a parallel method in that separate processors can, in principle, handle separate pairings of
terms at any recursion level.
We have merely sketched the technique in brief fashion. For the rigorous details of such ap-

plications of FEE, a good reference is [68], where the celebrated formula (61) for �(3) is used to
establish the O(M (N )log2 N ) bit complexity for N -bit precision; and therein of course the numerator
recursions are of pure-integer form.
As an example application of such techniques for very-high-precision work, in [59] the identity

of Amdeberhan and Zeilberger [5]:

�(3) =
1
2

∞∑
m=1

(−1)m−1(205m2 − 160m+ 32)
m5
(
2m
m

)5 (68)

is noted, together with the (S-series) assignments: a(n) = 205n2 + 250n + 77; b(n) = 1; p(0) = 1;
p(n) =−n5 for positive n, and q(n) = 32(2n+ 1)5.
In spite of Karatsuba’s FEE and its wide applicability, there remain some interesting open ques-

tions. For example, note that one can, in principle, use FEE recursion, but symbolically, in the follow-
ing sense. One recurses down only “half way”, to render an original sum of N terms as a new sum of
O(

√
N ) terms, each new term now being rational polynomial with each numerator and denominator

having say O(
√
N ) degree with integer coe�cients. (In our above example for the L constant, just

one level yields a degree-3 numerator, and we are saying one would continue the construction of
higher-degree numerators but only to a certain depth.) Now it is known that a degree-d polynomial
can be evaluated at O(d) points in O(d log2 d) operations with fast algorithms [45], so perhaps there
is a compromise in some cases, between full FEE recursion and a mixed, symbolic-FEE-polynomial
scheme. At the very least, these considerations lead out of the bit-complexity paradigm into a world
in which O(D1=2+�) operation complexity – meaning full-precision operations for every term – su�ces
for D good digits.

8. Curiosities and open questions

We end this treatise with a tour of some attractive curiosities from the annals of � function
studies. We do this not only because of the allure of such oddities, but also because there may well
be algorithmic consequences in the veri�cation or application of various of our recollections and
observations.
Let us �rst focus on the special case �(3), which number being for many reasons a kind of

celebrity in the world of � evaluation. The Ap�ery proof of the irrationality of �(3) which invokes
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formula (61), is by now legendary [104]. But within what we might call the Ap�ery formalism, there
are yet more interesting relations. If, like the present authors, one believes that polylogarithms of
algebraic arguments are fundamental constants, then there is a “closed-form” expression for �(3) due
to Landen [78,79] (6:13) namely

�(3) = 5
4Li3(�

−2) + 1
6�

2log �− 5
6 log

3 �;

where � is as before the golden mean (1 +
√
5)=2, and the polylogarithm is standardly de�ned:

Lis(z) =
∞∑
n=1

zn

ns
:

An equivalent form is the integral [79] (6:14)

�(3) = 10
∫ log �

0
t2 coth t dt

with equivalence following from known polylogarithm relations [79]. An open question is whether, in
view of the fact that there are coth expansions available, the Li3 form above can be computationally
accelerated. Another byproduct of the Ap�ery formalism is the remarkable continued fraction:

�(3) =
6

d(0)− 16

d(1)− 26

d(2)− 36

d(3)−. . .
in which d(n)=34n3+51n2+27n+5. Such continued fractions can be used to prove irrationality, in
yielding theoretical bounds on rational approximations of �(3), although Ap�ery’s original proof and
the accepted variants of same do not really concentrate on the fraction per se [104]. Complementary
to the theoretical value of the continued fraction, there are intriguing computational questions. One
should not rule out the continued fraction as a computational expedient. For one thing, the usual
recurrence relations for the convergents pn=qn of the fraction need not consume O(n) operations.
Because the fraction above has polynomial forms for the elements, one may consider the application
of fast polynomial evaluation methods. An open question is, just how e�cient can such an evaluation
approach be made?
Still on the topic of the illustrious �(3), Broadhurst [35] gave a remarkable formula, amounting to a

generalized polylogarithm expansion:

�(3) =
8
7

∞∑
k=1

1
k3

(
6ak

2b(k+1)=2c
+

4bk

2b3(k+1)=2c

)
;

{ak}= {1;−7;−1; 10;−1;−7; 1; 0; : : :};
{bk}= {1; 1;−1;−2;−1; 1; 1; 0}:

The Broadhurst formula is an extension of the discovery of Bailey et al. [12], that numbers such
as � and other constants can be cast in such periodic forms. The forms permit the determination
of isolated digits – albeit in restricted bases. In this way, Broadhurst gives the hexadecimal digits,
starting from the 10 millionth place (inclusive) of �(3), as: CDA01... It should be remarked that
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Broadhurst was also able to determine isolated digits of �(5) using a more complicated summation
involving three periodic coe�cient sequences. Bailey and Crandall have used such expansions to
establish, under a general dynamical hypothesis, random properties of the binary bits in various �
values [13]. Open questions include this one: as all summands are rational and the terms decay
geometrically in k, how best to adapt the Broadhurst series to the FEE method of Karatsuba, for
example what should be the “obvious denominators” during series contractions?
It seems as if research on �(3) will never end. As just one example of new directions in this regard,

Lan [77] recently proposed a possible avenue for proving �(3), or in fact any �(odd) transcendental.
His method involves the theory of certain cyclic �elds, to arrive at a formula

�(2k + 1) = �(2k)
2q2k+1 − q2k − q

q2k+1 − 1 Ak(q);

where q is a prime and the Ak coe�cient can be approximated via calculations in “tamely rami�ed
cyclic �elds”. The point is, if an Ak could be shown to be algebraic, then �(2k+1) is automatically
shown transcendental.
Interdisciplinary appearances of �(integer) can be amusing, attractive. In physics, because the

so-called Planck radiation law has terms of the form (ex − 1)−1, the theory of “blackbody radiation”
involves the integral (14) and perforce a � value. For example �(3); �(4) thus become embedded in
certain physical constants involving the theoretical rate at which a hot body radiates energy (in two,
three dimensions respectively). Another amusing – and quite di�erent – connection is in number
theory, where asymptotic relations can involve �(integer). Here is a well known such relation: the
probability that two random integers be relatively prime is 1=�(2). But sometimes one encounters a
more obscure relation. For example, one has the result of [29] that, if n be a power of two, the number
#(n) of solutions to n=p+xy with p prime and x; y positive integers enjoys the asymptotic relation

#(n)
n

∼ 105�(3)
2�4 :

It is unclear how to attempt high-precision numerical veri�cation of this peculiar result. One may
calculate for example that #(229) = 382203245, giving the poor approximation �(3) ∼ 1:320::: which
is o� the mark by 10%.
Next, we mention a computational connection between �-values and the gamma function. One can

derive intriguing limit relations for values at the odd positive integers, such as

�(3) = lim
�→0

1
2�3
log

�3(1 + �)�(1− �)
�(1 + 2�)

;

which shows that a fast algorithm for general � evaluation implies an analogous algorithm for �(3).
This limiting �-formula can be derived from the aforementioned expansion (26) for the  function.
Incidentally, in practice the actual error in this approximation to �(3) is just about 2�. Conversely, the
functional equation for the Riemann zeta function and duplication formula for the gamma function
allow one to compute � as e�ciently as �. We mention in passing that �(n=24) for positive integers
n may be computed with the same reduced complexity as �=�(1=2)2 (see [26]), via elliptic integral
evaluations.
One may use the recycling ideas of Algorithm 5 to deduce evaluations for speci�c arguments, for

example:

�(3) =−G(1; N )3 − 3G(1; N )G(2; N )− 3G(3; N ) + O(e−N );
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where we de�ne the G-function as a �nite sum:

G(s; N ) =
4N∑
k=1

(−N )k

k!ks
:

In fact, �(2n + 1) for any positive integer n can be expressed in terms of similar series [68,67]. It
is intriguing that this approach yields so simply to the FEE method of Karatsuba: the rational G
coe�cients are so very simple, the summation limit on G can conveniently be made a power of
two, and so on.
As for interesting interrelations involving general s we note the formulae of Landau:

1
s− 1 =

∞∑
n=0

(
s+ n− 1
n− 1

)
�(s+ n)− 1

n

and of Ramaswami:

(1− 21−s)�(s) =
∞∑
n=1

(
s+ n− 1

n

)
�(s+ n):

Remarkably, either formula is valid for all complex s; either one may be used to de�ne the com-
plete analytic continuation of � [101]. We present them here on the idea that perhaps they have
computational value. The Landau formula may possibly be used to accelerate other rational �-series
we have encountered.
An intriguing formula of quite a di�erent character is the following remarkable, van der Pol

integral representation, valid on the (open) critical strip, which representation amounts to a complete
Fourier decomposition of �(s)=s:

�(s) = s
∫ ∞

−∞
e−�!(be!c − e!)e−i!t d!;

where s= �+ it, and R (s) ∈ (0; 1). (Actually, the representation can be extended to the half-plane
R (s)¿ 0 by integrating only over (0;∞) and adding back a pole term s=(s− 1) on the right-hand
side.) The representation is especially intriguing for the Riemann critical line, that is for � = 1

2 .
This Fourier approach was actually used �fty years ago by van der Pol, who went so far as to
construct an electronic circuit to estimate – in what is called analog fashion – the critical behav-
ior of the Riemann zeta function [10,103]. An open computational question is: can discrete fast
Fourier transform methods be e�ciently used to estimate the Fourier integral? Of course, one cannot
rule out possible convergent schemes arising from theoretical manipulations per se of the van der
Pol integral representation. One connection between the van der Pol representation and our rational
�-series runs as follows. One of the known asymptotic relations for � on the Riemann critical line
is [101]

∫ T

−T
|�(1=2 + it)|2 dt ∼ 2T log T:
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But we can say something similar by appeal to the Fourier integral above. What might be called
the “signal power” relevant to the van der Pol decomposition is

P =
∫ ∞

−∞

∣∣∣∣�(1=2 + it)1=2 + it

∣∣∣∣
2

dt=2�
∫ ∞

−∞
e−!(be!c − e!)2 d!

=4�
{
3
2
− log 2−

∞∑
m=2

�(m)− 1
(−1)m(m+ 1)

}
: (69)

This last relation can be shown via the substitution ! 7→ logR in the power integral, then partitioning
the R domain into intervals [n; n + 1). At any rate, we have come full circle back to a �-series,
and provided at least one means for numerical evaluation of the power integral on the critical line.
Indeed the �-series (69) admits of exact evaluation, as in relation (45), yielding the exact signal
power value:

P = 2�(log 2�− ) = 7:920969195282313657947 : : : :

It is likewise intriguing that the Riemann hypothesis can be formulated in terms of the collection
of �-values at the even positive integers. There is the theorem of Riesz, that the Riemann hypothesis
is equivalent to the following big-O behavior of a certain, peculiar Riesz function R [101]:

R(x) =
∞∑
n=1

(−x)n

�(2n)(n− 1)! = O(x
1=4+�):

Alternatively the Riemann hypothesis is equivalent to a di�erent big-O condition of Hardy and
Littlewood [101]:

∞∑
n=1

(−x)n

�(2n+ 1)n!
= O(x−1=4);

It is unclear whether there be any computational value whatsoever to these equivalencies, especially
as the big-O statement is involved and therefore in�nite computational complexity is implicit, at least
on the face of it. Still, if there be any reason to evaluate such sums numerically, the aforementioned
methods for recycling of �(even) or �(odd) values would come into play.
Predating the Riesz function is the Riemann function de�ned by (5), together with its fascinating

connection with the distribution of prime numbers. What makes such connections yet more com-
pelling from a practical viewpoint is that various computational expedients exist for accelerating
certain evaluations. For example we have the Gram formula (see [95] for a derivation) as

Ri(x) = 1 +
∞∑
n=1

(log x)n

n�(n+ 1)n!
; (70)

whose very form may provide additional motivation for performing recycled computations of �-values
at positive integer arguments.
We should mention an interesting new foray into the world of asymptotic equivalencies for the

Riemann hypothesis: an application of the so-called Carleman continuation problem, described in
a treatment due to Aizenberg et al. [2]. Let us paraphrase here the authors’ proposition, that the
Riemann hypothesis is true if and only if we have the (large-n) behavior:

lim sup
n

|a−n |1=n = lim sup
n

|a+n |1=n = 1;
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where

a±n =
∫ (3±1)=4

(1±1)=4

(
(z2 − 1)i± 2z cos 2�x
1 + z2 ± 2z sin 2�x

)n
dx
�(x)

;

where 0¡z¡ 1 is otherwise unrestricted. It is possible to take the power n as high as N = 1020,
for which the authors �nd

|a−N |1=N ∼ 0:9999999999999999999956 : : : ;

|a+N |1=N ∼ 0:999999999999999999982 : : : ::
It is not yet known what is a proper scale in this asymptotic behavior; that is whether such numerical
results imply compelling bounds on locations of critical zeros.
More recent, but in the same general vein of integral equivalencies, is a theorem [14], to the e�ect

that the Riemann hypothesis is true if and only if the integral

I =
∫
log|�(s)|

|s|2 dt;

taken along the critical line s= 1
2 + it, vanishes. This would perhaps not be so compelling if it were

not for the exact expression those authors derived for the above integral, namely a sum formula:

I = 2�
∑

R (�)¿1=2

log
∣∣∣∣ �
1− �

∣∣∣∣ ;
where � denotes any zero in the critical strip, but to the right of the critical line as indicated,
counting multiplicity. It is interesting to plot the de�ning I integral for ever-increasing integration
limits, say, and witness a slow but chaotic tendency toward I = 0. For example, the approximation

I(T ) = 2
∫ T

t=0

log|�(1=2 + it)|
1=4 + t2

dt

appears to oscillate between about 10−9 and 10−6 in the vicinity of T ∼ 1000. One interesting
question is: even if the Riemann hypothesis be true, what is a valid positive � such that

I(T ) = O(T−�) ?

On the basis of preliminary numerical evidence (the aforementioned T ∼ 1000 data) we are moved
to conjecture that � = 2 is admissible. It is intriguing that such a numerically motivated statement
about a positive � is stronger than the Riemann hypothesis. Moreover, the sum formula for I could
conceivably be used to infer bounds on possible violations of the Riemann hypothesis. For example,
here is another interesting question: what could be inferred from sheer computation and the sum
formula if one assumed the existence of a single errant zero (�1¿ 1

2 ) + i(t1¿ 0) and its redundant
reections?
Also recent is the tantalizing result of [92], to the e�ect that the Riemann hypothesis is equivalent

to a positivity condition on the � function de�ned in (16), which condition applies at a single point
s= 1

2 as

dn�
dsn

(
1
2

)
¿ 0
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for every n = 2; 4; 6; : : : : This brings up an interesting computational exercise; namely, to provide
numerical values for a great number of such derivatives. It is nontrivial even to produce the �rst
few, which we list here (to unguaranteed, but suspected implied precision):

d2�
ds2

(
1
2

)
= 0:022971944315145437535249 : : : ;

d4�
ds4

(
1
2

)
= 0:002962848433687632165368 : : : ;

d6�
ds6

(
1
2

)
= 0:000599295946597579491843 : : :

with the 18th derivative being of order 2 · 10−6, and so on. Some possible, numerically motivated
conjectures are that the sequence of such derivatives is monotone decreasing, but that the successive
ratios of the (2m+1)th over the (2m)th are monotone increasing. Note that various of our convergent
series for � admit of internal di�erentiation. For example, one might invoke either series (30) or
(32) and di�erentiate with respect to s inside the summations. This will entail derivatives of the
incomplete gamma function; thus if one uses the integral representation following series (30), powers
of logarithms of the integration variable will appear in the formalism, yet we know from the works
of Karatsuba (see [69] for example) how to calculate such log-power integrals rapidly from series.
What may also work is the di�erentiation of a su�ciently deep rational polynomial expression as
such arises from the continued fraction formalism for incomplete gamma. It goes without saying that
if a single negative (2m)th derivative could be found – say to within rigorously bounded numerical
error – then the Riemann hypothesis would perforce be broken.
Seemingly reminiscent results in recent times are that of Li [80,20] to the e�ect that the Riemann

hypothesis is equivalent to the positivity property:

�n =
∑
�

(
1−

(
1− 1

�

)n)
¿ 0

holding for each n= 1; 2; 3; : : : ; with the sum over critical-strip zeros being interpreted in the usual
limit sense. Interestingly, the �n constants can be cast in terms of derivatives of log �(s), but this
time all such evaluated at s= 1. Yet another criterion equivalent to the Riemann hypothesis is that
of Lagarias [75]:

R

(
�′(s)
�(s)

)
¿ 0

whenever R (s)¿ 1
2 . Furthermore it may well be that the in�mum of the real part always occurs

for a given R (s) at R (s) + 0i, that is on the real axis.
We close this somewhat recreational section with “interdisciplinary” observations, some highly

speculative but some revealing connections between �-function theory and other scienti�c �elds.
Let us briey touch upon experiments that have been performed in the matter of “listening” to the

Riemann � function, by which we mean hearing a sound signal created as the real part of �(�+ it),
with imaginary part t taken to be time. One can easily hear qualitative di�erences between sounds
for say � = 0; 12 ; 1 and so on. We expect this on the basis of di�ering growth behavior of � along
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these lines of the s-plane. An heuristic can be forwarded [45], to the e�ect that along the critical
line �= 1

2 the resulting sound is “whitest” in the sense of white (at) spectrum. One can argue that,
in view of the formal sum:

�(� + it) =
∞∑
n=1

e−it log n

n�
;

the � function is a certain superposition of oscillators, with a scaling law that comes down to the
estimate

P(!) ∼ e−!(2�−1)

for the power present at frequency !. Indeed if this formula be continued – shall we say heuristically
– over to the critical strip, the power spectrum would be white on the critical line. Actually, when
one “hears” the critical-line signal, it is not random noise as we know it, but the signal does sound
like a roughly equal-strength mix of many oscillators. To achieve rigor in these heuristics, one would
have to analyze integrals such as (for large T ):

1
T

∫ T=2

−T=2
�(1=2 + it)e−i!t dt;

whose absolute square is essentially the power P(!). Due to the existence of such as the van der
Pol integral representation earlier in this section, such delicate spectral analysis may well be possible
(and may have been performed elsewhere, unbeknownst to the present authors).
More serious (less recreational) is the Hilbert–P�olya conjecture, saying in essence that the behavior

of the Riemann zeta function on the critical line R (s) = 1
2 depends somehow on a mysterious

(complex) Hermitian operator, of which the critical zeros would be eigenvalues. There is interesting
literature, of both theoretical and computational avors, in this regard. In particular, the pioneering
work of Montgomery and Dyson [84] on the statistical correlations amongst consecutive critical
zeros now has numerical supporting evidence; and it is widely conjectured that the mysterious
Hilbert–P�olya operator is of the Gaussian unitary ensemble (GUE) class. A relevant n × n matrix
G in such a theory has Gaa = xaa

√
2 and for a¿b; Gab = xab + iyab, together with the Hermiticity

condition Gab = G∗
ba; where every xab; yab is a Gaussian random variable with unit variance, mean

zero. The computations of Odlyzko [85,86] show that the statistics of consecutive critical zeros are
in many ways equivalent – experimentally speaking – to the theoretical distribution of eigenvalues
of a large such matrix G. (Actually, there is evidence that a more re�ned class, namely that of
unitary symplectic operators, may be more reasonable as the basis of such conjectures [96].) In
these connections, a great deal of fascinating work – by M.V. Berry and colleagues – under the
rubric of “quantum chaology” has arisen [17,18]. In some of this work [18], there even appears
an asymptotic expansion, reminiscent of the Riemann–Siegel expansion, motivated by semiclassical
ideas yet suitable perhaps for high-accuracy calculations on the critical line.
In another connection with quantum chaology, Connes [42] has recently given a spectral interpre-

tation of the critical zeros, as comprising an “absorption spectrum”, with noncritical zeros appearing
as “resonances”. His work connects quantum chaology, algebraic geometry and �eld theory, yielding
interesting equivalent forms of the Riemann hypothesis. There has also appeared an actual, claimed
proof of the Riemann hypotheses by de Branges [28], although the present authors are at the time
of this writing unaware of any con�rmation of that proof.
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It is intriguing that many of the various new expansion and associated observations relevant to
the critical zeros arise from the �eld of quantum theory, feeding back, as it were, into the study of
the Riemann zeta function. But the feedback of which we speak can move in the other direction, as
techniques attendant on the Riemann � apply to quantum studies. There is the so-called “quantum
zeta function”, which is a sum (when it exists)

z(s) =
∑
n

1
Es

n

over eigenvalues {E0; E1; : : :} of a speci�ed quantum system. For such as the quantum oscillator with
potential x2, so that energies are evenly spaced, the quantum z is essentially a scaled form of the
Riemann �. But – and this is quite the fascinating thing – it turns out that for some quantum systems
and certain s, we can evaluate z(s) exactly, even when not a single eigenvalue En be known. Voros
[105] showed that for the so-called power-law oscillator, in which the system potential is xm for an
integer m¿ 0, one has the exact evaluation:

z(1) =
(

2
(m+ 2)2

)m=(m+2) �2(2=(m+ 2))�(3=(m+ 2))
�(4=(m+ 2))�((m+ 1)=(m+ 2))

(
1 + sec

2�
m+ 2

)
:

Later, Crandall [46] showed that this relation holds for an arbitrary power-law (i.e., m¿ 0 need only
be real), and conjectured that this relation for z(1) is correct as an analytic continuation in some
scenarios for which the literal sum

∑
1=En diverges. This is very much like the fact of �(0) = − 1

2
even though the literal Riemann sum is, of course, divergent at s = 0. The point is, machinery
developed over the years on behalf of the Riemann � may well apply to the problem of evaluating
the quantum z. What is more, the zeros of z(s) may signal, by way of their distribution, the level
of quantum chaos inherent to the system. For this intriguing connection, see [46] and references
therein.
But in a somewhat di�erent vein there is a precise – in nature neither statistical nor asymptotic

– connection between quantum-theoretical operators and the critical zeros. In 1991 it was observed
by Crandall [43] that, in the standard formulation of quantum theory there exists a wave func-
tion (smooth, devoid of zeros) which, after a �nite evolution time under an harmonic-oscillator
Schroedinger equation, possesses in�nitely many zeros; furthermore these zeros coincide precisely
with the Riemann critical zeros. Speci�cally, de�ne an initial wave function

 (x; 0) = 2�
∞∑
n=1

n2 exp(−�n2e2|x|)(2�n2e9|x|=2 − 3e5|x|=2);

which appears in the standard theory of the critical zeros [101,85], and amounts to the Fourier
transform of the � function de�ned in (18). When plotted graphically this initial wave function
looks essentially like a “bell curve”, certainly innocent, if you will, on casual inspection. However,
evolution of a wave function  (x; �) under a Schroedinger oscillator equation (where a is any positive
real constant):

i
@ 
@�
=− 1

a2
@2 
@x2

+ a2x2 

for a precise time interval 06�6�=4 yields a very complicated wave function  (x; �=4) whose zeros
on the x-axis are the zeros of �( 12 + ix), said zeros being therefore in�nite in number. All of this
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is not hard to show from standard � function theory [101] and the theory of quantum harmonic
oscillators. For within the latter formalism one can show that after one-quarter of a classical period
of the oscillator evolution, a wave packet becomes essentially its own Fourier transform. However,
one also knows that basis expansions of wave functions can be useful, so we might contemplate an
eigenfunction expansion:

 (x=a; 0) =
∞∑
n=2

cnH2n(x)exp(−x2=2);

where Hk denotes the Hermite polynomial of degree k, with the coe�cients cn computable in terms
of the initial wave packet, via

cn =
√
�

22m−1(2m)!

∫ ∞

0
 (x=a; 0)H2m(x)exp(−x2=2) dx

with the parameter a free to be chosen for computational e�ciency (a = 4 is a good choice in
practice, as below). The result of quantum evolution of a Hermite-basis expansion is particularly
simple, and we obtain

�(x) = f(x)�( 12 + ix) = a−1
√
2� exp(−x2=(2a2))

∞∑
n=0

cn(−1)nH2n(x=a); (71)

where we recall, as in de�nition (18), that the function �(x) = f(x)�( 12 + ix) where f has no
real zeros. It is a fascinating thing that the Hermite expansion of the initial wave function only
needs these alternating (−1)n factors to change from a simple-looking wave packet to one with all
the complications relevant to the critical line. These observations, albeit recreational, are not entirely
specious. For one can perform an actual experiment, taking a=4 and the sum in (71) to say n=N=27
inclusive. In this way there will be 28 of the c coe�cients – obtained via numerical integration of
the initial packet – and we end up with a degree-54 polynomial in x as an approximation to �(x).
This stated experiment yields the speci�c approximation:

�(x)∼ exp(−x2=32)(0:497120778225837245 + 0:00404905216049614136x2

+ 0:00000725014346774865092x4 · · · − 1:39799726436057536 · 10−71x54);
and real zeros of this degree-54 polynomial are located at 14:13472514, 21:022039, 25:01086,
30:4248, 32:93, 37:6, 40:9, and their negatives, where we have indicated the good digits in com-
parison with established critical zeros – i.e., only good digits have been provided. Incidentally, one
does not forget that the degree-54 polynomial must have 54 complex zeros. It turns out that the 40
zeros remaining all have signi�cant imaginary argument. The general picture seems to be this: if one
adopts a large-degree-N polynomial, and plots its zeros on the complex (s= 1

2 +ix)-plane, then some
number – increasing somehow with N itself – of said zeros lie on the critical line, the rest forming
a kind of oval that circumscribes the collection of these real zeros. If the Riemann hypothesis were
to be cast in terms of the asymptotic behavior of the zeros of the polynomial

N∑
n=0

cn(−1)nH2n(x=a);

the relevant statement would have to involve the eventual expulsion of all the nonreal zeros, away
from, in some appropriate asymptotic sense, the Riemann critical strip. It is likewise intriguing that,
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as with any polynomial-root problem, the relevant zeros can, in principle, be described as eigenvalues
of a Hessenberg matrix involving the polynomial coe�cients.
Incidentally, Hermite polynomials �gure into the theory of the Riemann zeta function in at least

three other ways. They �gure into the Berry–Keating expansion, which we have said is an alternative
to the Riemann–Siegel formula [18]. The polynomials have also been used in Motohashi’s spectral
theory pertinent to � [83]. Recently, Bump et al. have analyzed a “local Riemann hyopthesis” into
which theory the zeros of Mellin transforms of orthogonal polynomials – including the Hermite
variety – �gure strongly [39].
Recreational aspects aside, an open issue is whether there be any computational bene�t to this

quantum connection. We observe that even though a di�erential equation would be solved numer-
ically, there exist a great many techniques for value recycling – including fast Fourier transform
analysis of the Schroedinger equation – in this case meaning simultaneous computation of many
wave function values at once. And there is yet another intriguing, interdisciplinary connection. There
has been some research on whether solutions to di�erential equations need be computable. Indeed in
[91] it is shown that one can have computable boundary conditions and yet su�er from incomputable
solutions. In turn, one recalls Bombieri’s suggestion that the Riemann � on the critical line is not
computable in polynomial (in log t) time. This is all speculative, indeed, but speculation has been a
common activity over the long history of the Riemann zeta function.
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